Skip to main content

Advertisement

Log in

From the Cell Membrane to the Nucleus: Unearthing Transport Mechanisms for Dynein

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mutations in the motor protein cytoplasmic dynein have been found to cause Charcot–Marie–Tooth disease, spinal muscular atrophy, and severe intellectual disabilities in humans. In mouse models, neurodegeneration is observed. We sought to develop a novel model which could incorporate the effects of mutations on distance travelled and velocity. A mechanical model for the dynein mediated transport of endosomes is derived from first principles and solved numerically. The effects of variations in model parameter values are analysed to find those that have a significant impact on velocity and distance travelled. The model successfully describes the processivity of dynein and matches qualitatively the velocity profiles observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ally, S., Larson, A. G., Barlan, K., Rice, S. E., & Gelfand, V. I. (2009). Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol., 187, 1071–1082.

    Article  Google Scholar 

  • Ashwin, P., Lin, C., & Steinberg, G. (2010). Queueing induced by bidirectional motor motion near the end of a microtubule. Phys. Rev. E, 82, 051907.

    Article  Google Scholar 

  • Bananis, E., Nath, S., Gordon, K., Satir, P., Stockert, R. J., Murray, J. W., & Wolkoff, A. W. (2004). Microtubule-dependent movement of late endocytic vesicles in vitro: requirements for dynein and kinesin. Mol. Biol. Cell, 15, 3688–3697.

    Article  Google Scholar 

  • Bier, M., & Cao, F. J. (2011). How occasional backstepping can speed up a processive motor protein. Biosystems, 103, 355–359.

    Article  Google Scholar 

  • Brown, C. L., Maier, K. C., Stauber, T., Ginkel, L. M., Wordeman, L., Vernos, I., & Schroer, T. A. (2005). Kinesin-2 is a motor for late endosomes and lysosomes. Traffic, 6, 1114–1124.

    Article  Google Scholar 

  • Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J., & Oiwa, K. (2003). Dynein structure and power stroke. Nature, 421, 715–718.

    Article  Google Scholar 

  • Carter, A. P., Cho, C., Jin, L., & Vale, R. D. (2011). Crystal structure of the dynein motor domain. Science, 331, 1159–1165.

    Article  Google Scholar 

  • Chen, X. J., Levedakou, E. N., Millen, K. J., Wollmann, R. L., Soliven, B., & Popko, B. (2007). Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J. Neurosci., 27(52), 14515–14524.

    Article  Google Scholar 

  • Cordelierés, F. (2005). Manual tracking. http://rsbweb.nih.gov/ij/plugins/track/track.html. Accessed online.

  • Deng, W., Garrett, C., Dombert, B., Soura, V., Banks, G., Fisher, E. M., van der Brug, M. P., & Hafezparast, M. (2010). Neurodegenerative mutation in cytoplasmic dynein alters its organization and dynein-dynactin and dynein-kinesin interactions. J. Biol. Chem., 285(51), 39922–39934. doi:10.1074/jbc.M110.178087.

    Article  Google Scholar 

  • Dinh, A., Pangarkar, C., Theofanous, T., & Mitragotri, S. (2006). Theory of spatial patterns of intracellular organelles. Biophys. J. Biophys. Lett. L67–L69.

  • Driskell, O. J., Mironov, A., Allan, V. J., & Woodman, P. G. (2007). Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat. Cell Biol., 9(1), 113–120.

    Article  Google Scholar 

  • Driver, J. W., Rogers, A. R., Jamison, D. K., Das, R. K., Kolomeisky, A. B., & Diehl, M. R. (2010). Coupling between motor proteins determines dynamic behaviours of motor protein assemblies. Phys. Chem. Chem. Phys., 12, 10398–10405.

    Article  Google Scholar 

  • Duchen, L. W. (1974). A dominant hereditary sensory disorder in the mouse with deficiency of muscle spindles: the mutant sprawling. J. Physiol., 237(2), 10P–11P.

    Google Scholar 

  • Friedman, A., & Cracium, G. (2005). A model of intracellular transport of particles in an axon. J. Math. Biol., 80, 217–246.

    Article  Google Scholar 

  • Gao, Y., Hubbert, C. C., & Yao, T. (2010). The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem., 285(15), 11219–11226.

    Article  Google Scholar 

  • Gee, M. A., Heuser, J. E., & Vallee, R. B. (1997). An extended microtubule-binding structure within the dynein motor domain. Nature, 390, 636–639.

    Article  Google Scholar 

  • Hafezparast, M., Klocke, R., Ruhrberg, C., Marquardt, A., Ahmad-Annuar, A., Bowen, S., Lalli, G., Witherden, A. S., Hummerich, H., Nicholson, S., Morgan, P. J., Oozageer, R., Priestley, J. V., Averill, S., King, V. R., Ball, S., Peters, J., Toda, T., Yamamoto, A., Hiraoka, Y., Augustin, M., Korthaus, D., Wattler, S., Wabnitz, M., Dickneite, P., Lampe, C., Boehme, S., Peraus, F., Popp, G., Rudelius, A., Schlegel, M., Fuchs, J., Hrabe de Angelis, H., Schiavo, G., Shima, D. T., Russ, A. P., Stumm, G., Martin, J. E., & Fisher, E. M. C. (2003). Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science, 300(5620), 808–812.

    Article  Google Scholar 

  • Harms, M. B., Ori-McKenney, K. M., Scoto, M., Tuck, E. P., Bell, S., Ma, D., & Masi, S. (2012). Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology. doi:10.1212/WNL.0b013e3182556c05.

    Google Scholar 

  • Hendricks, A. G., Lazarus, J. E., & Holzbaur, E. L. (2010). Dynein at odd angles? Nat. Cell Biol., 12, 1126–1128.

    Article  Google Scholar 

  • Hendricks, A. G., Epureanu, B. I., & Meyhöfer, E. (2008). Mechanistic mathematical model of kinesin under time and space fluctuating loads. Nonlinear Dyn., 53, 303–320.

    Article  MATH  Google Scholar 

  • Hoepfner, S., Severin, F., Cabezas, A., Habermann, B., Runge, A., Gilooly, D., Stenmark, H., & Zerial, M. (2005). Modulation of receptor recycling and degradation by the endosomal kinesin K1F16B. Cell, 121, 437–450.

    Article  Google Scholar 

  • Imafuku, Y., Thomas, N., & Tawada, K. (2009). Hopping and stalling of processive molecular motors. J. Theor. Biol., 261, 43–49.

    Article  Google Scholar 

  • Imamula, K., Kon, T., Ohkura, R., & Sutoh, K. (2009). The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA, 104, 16134–16139.

    Article  Google Scholar 

  • Invitrogen—Life Technologies (2012). Life technologies corporation. http://www.lifetechnologies.com/global/en/home.html. Accessed online.

  • Kon, T., Sutoh, K., & Kurisu, G. (2011). X-ray structure of a functional Full-length dynein motor domain. Nat. Struct. Mol. Biol., 18(6), 638–643.

    Article  Google Scholar 

  • Korn, C., Klumpp, S., Lipowsky, R., & Schwarz, U. S. (2009). Stochastic simulations of cargo transport by processive molecular motors. J. Chem. Phys., 131, 245107.

    Article  Google Scholar 

  • Kunwar, A., Vershinin, M., Xu, J., & Gross, S. P. (2008). Stepping, strain gating, and an unexpected force-velocity curve for multiple-motor-based transport. Curr. Biol., 18, 1173–1183.

    Article  Google Scholar 

  • Kuznetsov, A. V., & Hooman, K. (2008). Modelling traffic jams in intracellular transport in axons. Int. J. Heat Mass Transf., 51, 5695–5699.

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. (2011). Coupling a dynein transport model with a model of anterograde and retrograde transport of intracellular organelles. Int. Commun. Heat Mass Transf., 38, 833–837.

    Article  Google Scholar 

  • Lubery, S., Wilhelm, C., Hurbain, I., Neveu, S., Louvard, D., & Coudrier, E. (2008). Different microtubule motors move early and late endocytic compartments. Traffic, 9, 492–509.

    Article  Google Scholar 

  • MathWorks (2011). MATLAB product documentation. http://www.mathworks.co.uk/help/techdoc/ref/ode45.html. Accessed online.

  • Mitragotri, S., & Lahann, J. (2009). Physical approaches to biomaterial design. Nat. Mater., 8, 15–23.

    Article  Google Scholar 

  • Mukherji, S. (2008). Model for unidirectional motion of a dynein molecule. Phys. Rev. E, 77, 051916.

    Article  Google Scholar 

  • Munárriz, J., Mazo, J. J., & Falo, F. (2008). Model for hand-over-hand motion of molecular motors. Phys. Rev. E, 77, 031915.

    Article  Google Scholar 

  • Murray, J. W., & Wolkoff, A. W. (2003). Roles of the cytoskeleton and motor proteins in endocytic sorting. Adv. Drug Deliv. Rev., 55, 1385–1403.

    Article  Google Scholar 

  • Ori-McKenney, K. M., Xu, J., Gross, S. P., & Vallee, R. B. (2010). A cytoplasmic dynein tail mutation impairs motor processivity. Nat. Cell Biol., 12(12), 1228–1234.

    Article  Google Scholar 

  • Pollard, T. D., Earnshaw, W. C. (2008). Journal of cell biology (2nd ed.). Philadelphia: Elsevier. With J. Lippincott-Schwartz.

    Google Scholar 

  • Roberts, A. J., Numata, N., Walker, M. L., Kato, Y. S., Malkova, B., Kon, T., Ohkura, R., Arisaka, F., Knight, P. J., Sutoh, K., & Burgess, S. A. (2009). AAA+ ring and linker swing mechanism in the dynein motor. Cell, 136, 485–495.

    Article  Google Scholar 

  • Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E., & Holzbaur, E. L. (2006). Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat. Cell Biol., 8, 562–570.

    Article  Google Scholar 

  • Schaffner, S. C., & José, J. V. (2006). Biophysical model of self-organized spindle formation patterns without centrosomes and kinetochores. Proc. Natl. Acad. Sci. USA, 103(30), 11166–11171.

    Article  Google Scholar 

  • Schliwa, M., & Woehlke, G. (2003). Molecular motors. Nature, 422, 759–765.

    Article  Google Scholar 

  • Schuster, M., Kilaru, S., Ashwin, P., Lin, C., Severs, N. J., & Steinberg, G. (2011a). Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J., 30, 652–664.

    Article  Google Scholar 

  • Schuster, M., Kilaru, S., Fink, G., Collemare, J., Roger, Y., & Steinberg, G. (2011b). Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol. Biol. Cell, 22, 3645–3657.

    Article  Google Scholar 

  • Smith, D. A., & Simmons, R. M. (2001). Models of motor-assisted transport of intracellular particles. Biophys. J., 80, 45–68.

    Article  Google Scholar 

  • Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P., & Mallik, R. (2009). Tug of war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc. Natl. Acad. Sci. USA, 106(46), 19381–19386.

    Article  Google Scholar 

  • Tsygankov, D., Serohijos, A. W. R., Dokholyan, N. V., & Elston, T. C. (2009). Kinetic models for the coordinated stepping of cytoplasmic dynein. J. Chem. Phys., 130, 025101.

    Article  Google Scholar 

  • Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–480.

    Article  Google Scholar 

  • Weedon, M. N., Hastings, R., Caswell, R., Xie, W., Paszkiewicz, K., Antoniadi, T., Williams, M., King, C., Greenhalgh, L., Newbury-Ecob, R., & Ellard, S. (2011). Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot–Marie–Tooth disease. Am. J. Hum. Genet., 89(2), 308–312.

    Article  Google Scholar 

  • Willemsen, M. H., Vissers, L. E. L., Willemsen, M. A. A. P., van Bon, B. W. M., Kroes, T., de Ligt, J., & de Vries, B. B. (2012). Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J. Med. Genet., 49(3), 179–183. doi:10.1136/jmedgenet-2011-100542.

    Article  Google Scholar 

  • Wojcieszyn, J. W., Schlegel, R. A., Wu, E., & Jacobsom, K. A. (1981). Diffusion of injected macromolecules within the cytoplasm of living cells. Proc. Natl. Acad. Sci. USA, 78(7), 4407–4410.

    Article  Google Scholar 

  • Zadeh, K. S., & Shah, S. B. (2010). Mathematical modelling and parameter estimation of axonal cargo transport. J. Comput. Neurosci., 28, 495–507.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y. (2008). Three phase model of the processive motor protein kinesin. Biophys. Chem., 136, 19–22.

    Article  Google Scholar 

  • Zhang, Y. (2009). A general two-cycle network model of molecular motors. Physica A, 388, 3465–3474.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

LC was supported by a University of Sussex Junior Research Fellowship 2011. AM would like to acknowledge grant financial support from the LMS (R4P2), EPSRC (EP/H020349/1), the Royal Society Travel grant (R4K1), the Royal Society Research Grant (R4N9), and the British Council through its UK-US New Partnership Fund as part of the Strategic Alliances and Partnerships strand of the Prime Minister’s Initiative for International Education 2 (PMI2). MH and CG would like to acknowledge financial support from the BBSRC (BB/D526861/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anotida Madzvamuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crossley, L., Garrett, C.A., Hafezparast, M. et al. From the Cell Membrane to the Nucleus: Unearthing Transport Mechanisms for Dynein. Bull Math Biol 74, 2032–2061 (2012). https://doi.org/10.1007/s11538-012-9745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9745-x

Keywords

Navigation