Skip to main content

Advertisement

Log in

Impact of Latently Infected Cells on Strain Archiving Within HIV Hosts

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Latently infected cells are a barrier to HIV eradication on therapy due to long half-lives of between 6 and 44 months. The mechanism behind this long term maintenance is unclear although bystander proliferation and asymmetric division have both been put forward for consideration in mathematical models. The latently infected cell reservoir seems to act as an archive for strains of HIV no longer dominant in the blood, such as wild-type virus when the individual is on therapy. This is particularly significant when patients wish to come off medication and wild-type virus re-emerges.

We use a two target cell model capable of producing low-level viral load on therapy and include latent cells and two strains of virus, wild-type and drug resistant, to investigate the impact of two possible mechanisms of latent cell reservoir maintenance on strain archiving. We find that although short term (less than a year) archiving of viral strains is possible in a model with no mechanism for reservoir maintenance, both bystander proliferation and asymmetric division of latent cells allow archiving to occur over much longer timescales (2 or more years). We suggest that regardless of the mechanism involved, latent cell reservoir maintenance allows strain archiving to occur. We interpret our results for clinical consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnaout, R. A., Martin, A., et al. (2000). HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proc. R. Soc. Lond. Ser. B, Biol. Sci., 267, 1347–1354.

    Article  Google Scholar 

  • Bennett, D. E., Camacho, R. J., Otelea, D., Kuritzkes, D. R., Fleury, H., Kiuchi, M., Heneine, W., Kantor, R., Jordan, M. R., Schapiro, J. M., Vandamme, A.-M., Sandstrom, P., Boucher, C. A. B., van de Vijver, D., Rhee, S.-Y., Liu, T. F., Pillay, D., & Shafer, R. W. (2009). Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS ONE, 4(3), e4724. doi:10.1371/journal.pone.0004724.

    Article  Google Scholar 

  • Bonhoeffer, S., May, R. M., Shaw, G. M., & Nowak, M. A. (1997). Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA, 94, 6971–6976.

    Article  Google Scholar 

  • Callaway, D. S., & Perelson, A. S. (2002). HIV-1 infection and low steady state viral loads. Bull. Math. Biol., 64, 29–64.

    Article  Google Scholar 

  • Chun, T. W., Finzi, D., Margolick, J., Chadwick, K., Schwartz, D., & Siliciano, R. F. (1995). In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med., 1, 1284–1290.

    Article  Google Scholar 

  • Chun, T. W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J. A., Taylor, H., Hermankova, M., Chadwick, K., Margolick, J., Quinn, T. C., et al. (1997a). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, 387, 183–188.

    Article  Google Scholar 

  • Chun, T. W., Stuyver, L., Mizell, S. B., Ehler, L. A., Mican, J. A. M., Baseler, M., Lloyd, A. L., Nowak, M. A., & Fauci, A. S. (1997b). Proc. Natl. Acad. Sci. USA, 94(24), 13193–13197.

    Article  Google Scholar 

  • Chun, T. W., Engel, D., Mizell, S. B., Ehler, L. A., & Fauci, A. S. (1998). Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J. Exp. Med., 188(1), 83–91.

    Article  Google Scholar 

  • Di Mascio, M., Markowitz, M., Louie, M., Hogan, C., Hurley, A., Chung, C., Ho, D. D., & Perelson, A. S. (2003). Viral blip dynamics during highly active antiretroviral therapy. J. Virol., 77, 12165.

    Article  Google Scholar 

  • Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Racz, P., Tenner-Racz, K., & Haase, A. T. (1993). Massive covert infection of helper t lymphocytes and macrophages by hiv during the incubation period of aids. Nature, 362(6418), 359–362.

    Article  Google Scholar 

  • Finzi, D., & Siliciano, R. F. (1998). Viral dynamics in HIV-1 infection. Cell, 93(5), 665–671.

    Article  Google Scholar 

  • Heffernan, J. M., Smith, R. J., & Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. J. R. Soc. Interface, 2, 281–293.

    Article  Google Scholar 

  • Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., Markowitz, M., et al. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126.

    Article  Google Scholar 

  • Hockett, R. D., Kilby, J. M., Derdeyn, C. A., Saag, M. S., Sillers, M., Squires, K., Chiz, S., Nowak, M. A., Shaw, G. M., & Bucy, R. P. (1999). Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Med., 189(10), 1545.

    Article  Google Scholar 

  • Igarashi, T., Brown, C. R., Endo, Y., Buckler-White, A., Plishka, R., Bischofberger, N., Hirsch, V., & Martin, M. A. (2001). Macrophage and the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc. Natl. Acad. Sci. USA, 98(2), 658–663.

    Google Scholar 

  • Jones, L. E., & Perelson, A. S. (2005). Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART. Bull. Math. Biol., 67, 1227–1251.

    Article  MathSciNet  Google Scholar 

  • Jones, L. E., & Perelson, A. S. (2007). Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy. J. Acquir. Immune Defic. Syndr., 45(5), 483.

    Article  Google Scholar 

  • Kepler, T. B., & Perelson, A. S. (1998). Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc. Natl. Acad. Sci. USA, 95, 11514–11519.

    Article  MATH  Google Scholar 

  • Kim, H., & Perelson, A. S. (2006). Viral and latent reservoir persistence in HIV-1-infected patients on therapy. PLoS Comput. Biol., 2, 1232–1247.

    Google Scholar 

  • Markowitz, M., Louie, M., Hurley, A., Sun, E., Di Mascio, M., Perelson, A. S., & Ho, D. D. (2003). A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J. Virol., 77(8), 5037.

    Article  Google Scholar 

  • McLean, A. R., & Nowak, M. A. (1992). Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS, 6, 71–79.

    Article  Google Scholar 

  • McLean, A. R., Emery, V. C., Webster, A., & Griffiths, P. D. (1991). Population dynamics of HIV within an individual after treatment with zidovudine. AIDS, 5, 485–489.

    Article  Google Scholar 

  • Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A. S., & Ho, D. D. (1998). Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science, 279(5354), 1223.

    Article  Google Scholar 

  • Müller, V., Vigueras-Gòmez, J. V., & Bonhoeffer, S. (2002). Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection. J. Virol., 76, 8963–8965.

    Article  Google Scholar 

  • Nowak, M. A., Bonhoeffer, S., Shaw, G. M., & May, R. M. (1997). Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol., 184(2), 203–217.

    Article  Google Scholar 

  • Perelson, A. S., & Ribeiro, R. M. (2008). Estimating drug efficacy and viral dynamic parameters: HIV and HCV. Stat. Med., 27(23), 4647–4657.

    Article  MathSciNet  Google Scholar 

  • Perelson, A. S., Kirschner, D. E., & De Boer, R. (1993). Dynamics of HIV infection of CD4+ T cells. Math. Biosci., 114(1), 81–125.

    Article  MATH  Google Scholar 

  • Perelson, A. S., Essunger, P., Cao, Y., Vesaneir, M., Hurley, A., Sakselat, K., Markowitz, M., & Ho, D. D. (1995). Decay characteristics of HIV-1-infected compartments during combination therapy. Nature, 267, 483–489.

    Google Scholar 

  • Perno, C. F., Newcomb, F. M., Davis, D. A., Aquaro, S., Humphrey, R. W., Calio, R., & Yarchoan, R. (1998). Relative potency of protease inhibitors in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus. J. Infect. Dis., 178(2), 413–422.

    Article  Google Scholar 

  • Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J. E., Markowitz, M., Moore, J. P., Perelson, A. S., & Ho, D. D. (1999). Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet, 354(9192), 1782–1785.

    Article  Google Scholar 

  • Ramratnam, B., Mittler, J. E., Zhang, L., Boden, D., Hurley, A., Fang, F., Macken, C. A., Perelson, A. S., Markowitz, M., & Ho, D. D. (2000). The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat. Med., 6(1), 82–85.

    Article  Google Scholar 

  • Roberts, J. D., Bebenek, K., & Kunkel, T. A. (1998). The accuracy of reverse transcriptase from HIV-1. Science, 242(4882), 1171.

    Article  Google Scholar 

  • Rong, L., & Perelson, A. S. (2009a). Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol., 260, 308–331.

    Article  Google Scholar 

  • Rong, L., & Perelson, A. S. (2009b). Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips. Math. Biosci., 217, 77–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Rong, L., & Perelson, A. S. (2009c). Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput. Biol., 5, e1000533.

    Article  MathSciNet  Google Scholar 

  • Rong, L., Feng, Z., & Perelson, A. S. (2007). Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull. Math. Biol., 69, 2027–2060.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruff, C. T., Ray, S. C., Kwon, P., Zinn, R., Pendelton, A., Hutton, N., Ashworth, R., Gange, S., Quinn, T. C., Siliciano, R. F., & Persaud, D. (2002). Persistence of wild-type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus type 1 in pediatric patients with extensive antiretroviral exposure. J. Virol., 76, 9481–9492.

    Article  Google Scholar 

  • Sachsenberg, N., Perelson, A. S., Yerly, S., Schockmel, G. A., Leduc, D., Hirschel, B., & Perrin, L. (1998). Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J. Exp. Med., 187, 1295–1303.

    Article  Google Scholar 

  • Siliciano, J. D., Kajdas, J., Finzi, D., Quinn, T. C., Chadwick, K., Margolick, J. B., Kovacs, C., Gange, S. J., & Siliciano, R. F. (2003). Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med., 9, 727–728.

    Article  Google Scholar 

  • Stevenson, M. (1996). Portals of entry: uncovering HIV nuclear transport pathways. Trends Cell Biol., 6, 9–15.

    Article  Google Scholar 

  • Stevenson, M., & Gendelman, H. E. (1994). Cellular and viral determinants that regulate HIV-1 infection in macrophages. J. Leukoc. Biol., 56, 278–288.

    Google Scholar 

  • Ward, Z. D., White, K. A. J., & van Voorn, G. A. K. (2009). Exploring the impact of target cell heterogeneity on hiv loads in a within-host model. Epidemics, 1, 168–174.

    Article  Google Scholar 

  • Zhang, L., Ramratnam, B., Tenner-Racz, K., He, Y., Vesanen, M., Lewin, S., Talal, A., Racz, P., Perelson, A. S., Korber, B. T., et al. (1999). Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med., 340, 1605–1613.

    Article  Google Scholar 

Download references

Acknowledgements

Zoë Ward was funded to carry out this work by a studentship from the University of Bath. We are grateful to the reviewers for their constructive comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoë Ward.

Appendices

Appendix A: Parameter Derivations

1.1 A.1 Secondary Target Cell Parameters

Values for the cell production rate λ 2 and the infection rate β 2 for the secondary target cells were calculated using the following constraints (Callaway and Perelson 2002). Constraint 1: given e=1 and h=0 (drug 100 % effective in main target cell and completely ineffective in second target cell) the viral load should be 100 virions per ml. Constraint 2: given e=1 and h=0.5 (drug half as effective in second target cell) the viral load should be 0. Assuming e=1 gives

$$ v_w=\frac{\lambda_2 k}{ac}-\frac{d}{\beta_2(1-h)}. $$

Using the two constraints and parameter values from Table 1, we find λ 2=1.533 and β 2=10−4.

1.2 A.2 Mutation Rate

The HIV mutation rate per base per replication has been found to be around 3×10−5 (Perelson and Ribeiro 2008). As there are approximately 50 different reverse transcriptase inhibitor resistance mutations (Bennett et al. 2009), we have used a mutation rate of 5×10−4.

1.3 A.3 Asymmetric Division Terms from Model 3

Upon activation by an antigen, the latent cells divide to produce two daughter cells. There are three possible outcomes of this: two latently infected cells are created, one latently infected cell and one productively infected cell are created, or two productively infected cells are created. We assume that the parent cell is lost when the two new cells are created. If we take the probability of a daughter cell being latently infected to be p l then the expected number of new latent cells upon activation is \((2\times p_{l}^{2}+1\times 2p_{l}(1-p_{l})-1 )L_{i}=(2p_{l}-1)L_{i}\) and the expected number of active cells is (2×(1−p l )2+1×2p l (1−p l ))L i =2(1−p l )L i .

Appendix B: Steady State Calculations

From the differential equations for latently infected cells (1), it is clear that if f>0 and P is negative there are no steady states. This is because the left-hand side of the differential equation would be positive meaning that the concentration of latent cells will always grow. The analysis below assumes that if f>0 then P>0.

It is not possible to obtain explicit expressions for steady states when ϵ>0. However, we can find series solutions of the form \(T=\sum_{i=0}^{\infty} \epsilon^{i} T_{i}\), where T=S,I,V is a given state variable. Below we give the O(1) solutions which are equivalent to finding the steady states of the corresponding competition model (ϵ=0). Setting ϵ=0 and the left-hand sides of the system of ordinary differential equations (1) to zero, we obtain the following four steady states: disease free, dominant wild-type, dominant resistant, and ‘co-existence’. The steady state and R 0i expressions for each model can be obtained by substituting in the relevant forms for P and Q.

  1. 1.

    The disease free steady state is S 1=λ 1/d,S 2=λ 2/d with all other state variables equal to zero.

  2. 2.

    The dominant wild-type steady state depends on the roots of the quadratic:

    (2)

    where the basic reproductive ratios are \(R_{01w}=\frac{\lambda_{1} (1-e)\beta_{1} k}{acd} (1-f +\frac{fQ}{P} )\), \(R_{02w}=\frac{\lambda_{2}(1-eh)\beta_{2}k}{acd}\) and R 0w =R 01w +R 02w . The other variables are

    (3)

    All variables also have O(ϵ) terms and are therefore non-zero.

  3. 3.

    The dominant mutant steady state depends on the roots of the quadratic:

    (4)

    where \(R_{01m}=\frac{\lambda_{1} r\beta_{1} k}{acd} (1-f +\frac{fQ}{P} )\), \(R_{02m}=\frac{\lambda_{2}r\beta_{2}k}{acd}\) and R 0m =R 01m +R 02m . The other variables are

    (5)

    Again all variables have O(ϵ) terms and are non-zero.

  4. 4.

    The co-existence steady state is given by:

    (6)

    All variables have additional terms of O(ϵ).

The existence and stability of the steady states are discussed below.

  1. 1.

    The disease free steady state is stable if the basic reproductive ratio max(R 0w ,R 0m )<1, otherwise it is unstable.

  2. 2.

    When the respective basic reproductive ratio R 0i >1 for i=w,m, there is a single real positive root of the quadratic in v i leading to a biologically realistic dominant strain steady state.

  3. 3.

    The co-existence steady state only exists if h≠1. As the parameter values used give both P and Q positive the steady state expressions for S 1 and S 2 are both positive if (1−e)<r<(1−eh). In addition providing v w and v m are positive, the remaining variables are also positive. Therefore, in order to ascertain whether the co-existence steady state is biologically realistic the constraints for v w >0 and v m >0 need to be investigated. Numerical solutions were obtained for a range of parameter values and the region of parameter space for which the co-existence steady state was stable was vanishingly small (data not shown).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, Z., White, J. Impact of Latently Infected Cells on Strain Archiving Within HIV Hosts. Bull Math Biol 74, 1985–2003 (2012). https://doi.org/10.1007/s11538-012-9742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9742-0

Keywords

Navigation