Skip to main content
Log in

Game Dynamic Model for Yeast Development

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Game theoretic models, along with replicator equations, have been applied successfully to the study of evolution of populations of competing species, including the growth of a population, the reaching of the population to an equilibrium state, and the evolutionary stability of the state. In this paper, we analyze a game model proposed by Gore et al. (Nature 456:253–256, 2009) in their recent study on the co-development of two mixed yeast strains. We examine the mathematical properties of this model with varying experimental parameters. We simulate the growths of the yeast strains and compare them with the experimental results. We also compute and analyze the equilibrium state of the system and prove that it is asymptotically and evolutionarily stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aster, R., Borchers, B., & Thurber, C. (2005). Parameter estimation and inverse problems. Amsterdam/San Diego: Elsevier/Academic Press.

    MATH  Google Scholar 

  • Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 1390–1396.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, S. P., Griffin, A. S., Campbell, G. S., & West, S. A. (2007). Cooperation and conflict in quorum-sensing bacterial populations. Nature, 450, 411–414.

    Article  Google Scholar 

  • Durrett, R., & Levin, S. (1997). Allelopathy in spatially distributed populations. J. Theor. Biol., 185, 165–171.

    Article  Google Scholar 

  • Gore, J., Youk, H., & van Oudenaarden, A. (2009). Snowdrift game dynamics and facultative cheating in yeast. Nature, 456, 253–256.

    Article  Google Scholar 

  • Griffin, A. S., West, S. A., & Buckling, A. (2004). Cooperation and competition in pathogenic bacteria. Nature, 430, 1024–1027.

    Article  Google Scholar 

  • Hauert, C., & Doebeli, M. (2004). Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428, 643–646.

    Article  Google Scholar 

  • Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, B. J. M. (2002). Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature, 418, 171–174.

    Article  Google Scholar 

  • MacLean, R. C., & Gudelj, I. (2006). Resource competition and social conflict in experimental populations of yeast. Nature, 441, 498–501.

    Article  Google Scholar 

  • Nash, J. (1950). Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA, 36, 48–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak, M. A. (2006a). Evolutionary dynamics: exploring the equations of life. Cambridge: Belknap Press.

    MATH  Google Scholar 

  • Nowak, M. A. (2006b). Five rules for the evolution of cooperation. Science, 314, 1560–1563.

    Article  Google Scholar 

  • Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359, 826–829.

    Article  Google Scholar 

  • Rainey, P. B., & Rainey, K. (2003). Evolution of cooperation and conflict in experimental bacterial populations. Nature, 425, 72–74.

    Article  Google Scholar 

  • Santorelli, L. A., et al. (2008). Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature, 451, 1107–1110.

    Article  Google Scholar 

  • Smith, J. M., & Price, G. R. (1973). The logic of animal conflict. Nature, 246, 15–18.

    Article  Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Webb, J. N. (2007). Springer undergraduate mathematics series. Game theory: decisions, interaction and evolution. Berlin: Springer.

    MATH  Google Scholar 

  • West, S. A., Griffin, A. S., Gardner, A., & Diggle, S. P. (2006). Social evolution theory for microorganisms. Nat. Rev., Microbiol., 4, 597–607.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Jeff Gore for kindly giving us the Matlab code for generating some of the graphical results in their paper and for providing helpful suggestions and advices for how to proceed in our computation. This work is partially supported by the NIH/ /NIGMS grants R01GM072014 and R01GM081680 and by the NSF/ /DMS grant DMS0914354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Wu, Z. Game Dynamic Model for Yeast Development. Bull Math Biol 74, 1469–1484 (2012). https://doi.org/10.1007/s11538-012-9721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9721-5

Keywords

Navigation