Skip to main content

Advertisement

Log in

Modeling of Biocide Action Against Biofilm

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider the mathematical model of dynamic antimicrobial action against bacterial biofilms. A mixture model is used in which the biofilm consisting of live and dead bacteria is modeled as one fluid component, while the solvent containing biocide is modeled as the other, and each component is represented by its volume fraction. The whole system is assumed to be an incompressible fluid and the velocity is governed by the Navier–Stokes equation. Biocide kills the live bacteria and its transport is governed by an advection–reaction–diffusion equation. Certain biocide also weakens the mechanical cohesiveness of the biofilm and results in biofilm removal under the shear stress of the external flow. Spatial and temporal patterns of antimicrobial action of three different biocides are considered and numerical simulation results by finite difference method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anguige, K., King, J. R., & Ward, J. P. (2005). Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured pseudomonas aeruginosa population. J. Math. Biol., 51, 557–594.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambless, J. D., Hunt, S. M., & Stewart, P. S. (2006). A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl. Environ. Microbiol., 72, 2005–2013.

    Article  Google Scholar 

  • Characklis, W. G., & Marshall, K. C. (1990). Biofilms. New York: Wiley.

    Google Scholar 

  • Cogan, N. G. (2008). Two-fluid model of biofilm disinfection. Bull. Math. Biol., 70, 800–819.

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan, N. G., Cortez, R., & Fauci, L. (2005). Modeling physiological resistance in bacterial biofilms. Bull. Math. Biol., 67, 831–853.

    Article  MathSciNet  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annu. Rev. Microbiol., 49, 711–745.

    Article  Google Scholar 

  • Davison, W. M., Pitts, B., & Stewart, P. S. (2010). Spatial and temporal patterns of biocide action against staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother., 54, 2920–2927.

    Article  Google Scholar 

  • Demaret, L., Eberl, H. J., Efendiev, M. A., & Lasser, R. (2008). Analysis and simulation of a meso-scale model of diffusive resistance of bacterial biofilms to penetration of antibiotics. Adv. Math. Sci. Appl., 18, 269–304.

    MathSciNet  MATH  Google Scholar 

  • Dodds, M. G., Grobe, K. J., & Stewart, P. S. (2000). Modeling biofilm antimicrobial resistance. Biotechnol. Bioeng., 68, 456–465.

    Article  Google Scholar 

  • Doi, M. (1995). Introduction to polymer physics. Oxford: Oxford Science Publications.

    Google Scholar 

  • Eberl, H. J., & Sudarsan, R. (2008). Exposure of biofilms to slow flow fields: The convective contribution to growth and disinfection. J. Theor. Biol., 253, 788–807.

    Article  Google Scholar 

  • Gibbons, R. J., & van Houte, J. (1980). Bacterial adherence and the formation of dental plaque. In E. M. Beachey (Ed.), Bacterial adherence (pp. 61–104). London: Chapman & Hall.

    Google Scholar 

  • Guermond, J. L., Minev, P., & Shen, J. (2006). An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng., 95, 6011–6045.

    Article  MathSciNet  Google Scholar 

  • Hinson, R. K., & Kocher, W. M. (1996). Model for effective diffusivities in aerobic biofilms. J. Environ. Eng., 122(11), 1023–1030.

    Article  Google Scholar 

  • Jesaitis, A. J., Franklin, M. J., Berglund, D., Sasaki, M., Lord, C. I., Bleazard, J. B., Duffy, J. E., Beyenal, H., & Lewandowski, Z. (2003). Compromised host defense on pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J. Immunol., 171, 4329–4339.

    Google Scholar 

  • Klapper, I., & Dockery, J. (2010). Mathematical description of microbial biofilms. SIAM Rev., 52, 221–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, K. (2001). Riddle of biofilm resistance. Antimicrob. Agents Chemother., 45, 999–1007.

    Article  Google Scholar 

  • Lindley, B., Wang, Q., & Zhang, T. (2011). A multicomponent model for biofilm-drug interaction. Discrete Contin. Dyn. Syst., Ser. B, 15, 417–456.

    Article  MathSciNet  MATH  Google Scholar 

  • Ol’shanskii, M. A., & Staroverov, V. M. (2000). On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid. Int. J. Numer. Methods Fluids, 33, 499–534.

    Article  MATH  Google Scholar 

  • Passerini, L., Lam, K., Costerton, J. W., & King, E. G. (1992). Biofilms on indwelling vascular catheters. Clin. Crit. Care Med., 20, 665–673.

    Article  Google Scholar 

  • Saad, Y., & Schultz, M. H. (1986). Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanderson, S. S., & Stewart, P. S. (1997). Evidence of bacterial adaptation to monochloramine in pseudomonas aeruginosa biofilms and evaluation of biocide action model. Biotechnol. Bioeng., 56, 201–209.

    Article  Google Scholar 

  • Schein, O. D., Glynn, R. J., Seddon, J. M., & Kenyon, K. R. (1989). The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N. Engl. J. Med., 321, 773–778.

    Article  Google Scholar 

  • Shaw, T., Winston, M., Rupp, C. J., Klapper, I., & Stoodley, P. (2004). Commonality of elastic relaxation times in biofilms. Phys. Rev. Lett., 93, 098102.

    Article  Google Scholar 

  • Stewart, P.S. (1996). Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother., 40, 2517–2522.

    Google Scholar 

  • Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 292, 107–113.

    Article  Google Scholar 

  • Stewart, P. S. (2003). Diffusion in biofilms. J. Bacteriol., 185, 1485–1491.

    Article  Google Scholar 

  • Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138.

    Article  Google Scholar 

  • Stickler, D., Ganderton, L., King, J., Nettleton, J., & Winters, C. (1993). Proteus mirabilis biofilms and the encrustation of urethral catheters. Urol. Res., 21(6), 407–411.

    Article  Google Scholar 

  • Szomolay, B., Klapper, I., Dockery, J., & Stewart, P. S. (2005). Adaptive responses to antimicrobial agents in biofilms. Environ. Microbiol., 7, 1186–1191.

    Article  Google Scholar 

  • Zhang, T., & Klapper, I. (2010). Mathematical model of biofilm induced calcite precipitation. Water Sci. Technol., 61, 2957–2964.

    Article  Google Scholar 

  • Zhang, T., Cogan, N., & Wang, Q. (2008a). Phase-field models for biofilms I. Theory and simulations. SIAM J. Appl. Math., 69, 641–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, T., Cogan, N., & Wang, Q. (2008b). Phase-field models for biofilms. II. 2-D numerical simulations of biofilm-flow interaction. Commun. Comput. Phys., 4, 72–101.

    Google Scholar 

Download references

Acknowledgements

T. Zhang is supported by NSF through Grant DMS-0934696. The author thanks Philip Stewart for many helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T. Modeling of Biocide Action Against Biofilm. Bull Math Biol 74, 1427–1447 (2012). https://doi.org/10.1007/s11538-012-9719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9719-z

Keywords

Navigation