Skip to main content
Log in

Life Stages: Interactions and Spatial Patterns

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In many stage-structured species, different life stages often occupy separate spatial niches in a heterogeneous environment. Life stages of the giant flour beetle Tribolium brevicornis (Leconte), in particular adults and pupae, occupy different locations in a homogeneous habitat. This unique spatial pattern does not occur in the well-studied stored grain pests T. castaneum (Herbst) and T. confusum (Duval). We propose density dependent dispersal as a causal mechanism for this spatial pattern. We model and explore the spatial dynamics of T. brevicornis with a set of four density dependent integrodifference and difference equations. The spatial model exhibits multiple attractors: a spatially uniform attractor and a patchy attractor with pupae and adults spatially separated. The model attractors are consistent with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoit, H. P., et al. (1998). Testing the demographic consequences of cannibalism in Tribolium confusum. Ecology, 78, 2839–2851.

    Google Scholar 

  • Costantino, R. F., & Desharnais, R. A. (1991). Population dynamics and the Tribolium model: genetics and demography. New York: Springer.

    Book  Google Scholar 

  • Cushing, J. M. (2004). The LPA model. Fields Inst. Commun., 42, 29–55.

    MathSciNet  Google Scholar 

  • Cushing, J. M., et al. (2003). Chaos in Ecology: Experimental Nonlinear Dynamics, vol. 1. Theoretical Ecology Series. New York: Academic Press.

    Google Scholar 

  • Dennis, B., et al. (1995). Nonlinear demographic dynamics: Mathematical models, statistical methods, and biological experiments. Ecol. Monogr., 65, 261–281.

    Article  Google Scholar 

  • Edmunds, J., et al. (2003). Park’s Tribolium competition experiments: a non-equilibrium species coexistence hypothesis. J. Anim. Ecol., 72, 703–712.

    Article  Google Scholar 

  • Ghent, A. W. (1966). Studies of behavior of the Tribolium flour beetles. II. Distributions in depth of T. castaneum and T. confusum in fractionable shell vials. Ecology, 47, 355–367.

    Article  Google Scholar 

  • Harrison, R. G. (1980). Dispersal polymorphisms in insects. Ann. Rev. Ecolog. Syst., 11, 95–118.

    Article  Google Scholar 

  • Hastings, A., & Costantino, R. F. (1991). Oscillations in population numbers: age-dependent cannibalism. J. Anim. Ecol., 60, 471–482.

    Article  Google Scholar 

  • Hill, C. (1988). Life cycle and spatial distribution of the amphipod Pallasea quadrispinosa in a lake in northern Sweden. Holartic Ecology, 11, 298–304.

    Google Scholar 

  • Hunte, W., & Myers, R. A. (1984). Phototaxis and cannibalism in gammaridean amphipods. Mar. Biol., 81, 75–79.

    Article  Google Scholar 

  • Jillson, D. A., & Costantino, R. F. (1980). Growth, distribution, and competition of Tribolium castaneum and Tribolium brevicornis in fine-grained habitats. Am. Nat., 116, 206–219.

    Article  Google Scholar 

  • Jormalainen, V., & Shuster, S. M. (1997). Microhabitat segregation and cannibalism in an endangered freshwater isopod, Thermosphaeroma thermophilum. Oecologia, 111, 271–279.

    Article  Google Scholar 

  • Kisimoto, R. (1956). Effect of crowding during the larval period on the determination of the wing form of an adult plant-hopper. Nature, 178, 641–642.

    Article  Google Scholar 

  • Leonardsson, K. (1991). Effects of cannibalism and alternative prey on population dynamics of Saduria entomon (Isopoda). Ecology, 72, 1273–1285.

    Article  Google Scholar 

  • Leslie, P. H., Park, T., & Mertz, D. B. (1968). The effect of varying the initial numbers on the outcome of competition between two Tribolium species. J. Anim. Ecol., 37, 9–23.

    Article  Google Scholar 

  • Ribes, M., et al. (1996). Small scale spatial heterogeneity and seasonal variation in a population of a cave-dwelling Mediterannean mysid. J. Plankton Res., 18, 659–671.

    Article  Google Scholar 

  • Robertson, S. L. (2009) Spatial patterns in stage-structured populations with density dependent dispersal, PhD Thesis, University of Arizona.

  • Robertson, S. L., & Cushing, J. M. (2011a). Spatial segregation in stage-structured populations with an application to Tribolium. Journal of Biological Dynamics, 5(5), 398–409.

    Article  MATH  Google Scholar 

  • Robertson, S. L., & Cushing, J. M. (2011b). A bifurcation analysis of stage-structured density dependent integrodifference equations. J. Math. Anal. Appl. doi:10.1016/j.jmaa.2011.09.064.

    Google Scholar 

  • Sokoloff, A., et al. (1980). Observations on populations of Tribolium brevicornis (Le conte) (Coleoptera, Tenebrionidae). I. Laboratory observations of domesticated strains. Res. Popul. Ecol., 22, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne L. Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, S.L., Cushing, J.M. & Costantino, R.F. Life Stages: Interactions and Spatial Patterns. Bull Math Biol 74, 491–508 (2012). https://doi.org/10.1007/s11538-011-9705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9705-x

Keywords

Navigation