Skip to main content
Log in

In Silico Synergism and Antagonism of an Anti-tumour System Intervened by Coupling Immunotherapy and Chemotherapy: A Mathematical Modelling Approach

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Based on the logistic growth law for a tumour derived from enzymatic dynamics, we address from a physical point of view the phenomena of synergism, additivity and antagonism in an avascular anti-tumour system regulated externally by dual coupling periodic interventions, and propose a theoretical model to simulate the combinational administration of chemotherapy and immunotherapy. The in silico results of our modelling approach reveal that the tumour population density of an anti-tumour system, which is subject to the combinational attack of chemotherapeutical as well as immune intervention, depends on four parameters as below: the therapy intensities D, the coupling intensity I, the coupling coherence R and the phase-shifts Φ between two combinational interventions. In relation to the intensity and nature (synergism, additivity and antagonism) of coupling as well as the phase-shift between two therapeutic interventions, the administration sequence of two periodic interventions makes a difference to the curative efficacy of an anti-tumour system. The isobologram established from our model maintains a considerable consistency with that of the well-established Loewe Additivity model (Tallarida, Pharmacology 319(1):1–7, 2006). Our study discloses the general dynamic feature of an anti-tumour system regulated by two periodic coupling interventions, and the results may serve as a supplement to previous models of drug administration in combination and provide a type of heuristic approach for preclinical pharmacokinetic investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appay, V., Voelter, V., Rufer, N., Reynard, S., Jandus, C., Gasparini, D., Lienard, D., Speiser, D. E., et al. (1997). Combination of transient lymphodepletion with busulfan and fludarabine and peptide vaccination in a phase I clinical trial for patients with advanced melanoma. J. Immunother. (Hagerstown, Md.), 30(2), 240–250.

    Google Scholar 

  • Bunow, B., & Weinstein, J. N. (1990). COMBO: A new approach to the analysis of drug combinations in vitro. Ann. N.Y. Acad. Sci., 616(1), 490–494.

    Article  Google Scholar 

  • Butcher, J. C. (2003). Numerical methods for ordinary differential equations. New York: Wiley.

    Book  MATH  Google Scholar 

  • Byrne, H. M. (2003). Treatment of Homogeneous Solid Tumours. In L. Preziosi (Ed.), Cancer modelling and simulation. New York: Chapman & Hall/CRC. Section 4.2.3.

    Google Scholar 

  • Chareyron, S., & Alamir, M. (2009). Mixed immunotherapy and chemotherapy of tumours: feedback design and model updating schemes. J. Theor. Biol., 258(3), 444–454.

    Article  Google Scholar 

  • Chou, T. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 58(3), 621–681.

    Article  Google Scholar 

  • Chou, T., & Talalay, P. (1984). Quantitative analysis of dose—effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 22, 27–55.

    Article  Google Scholar 

  • de Pillis, L. G., Gu, W., & Radunskaya, A. E. (2006). Mixed immunotherapy and chemotherapy of tumours: modeling, applications and biological interpretations. J. Theor. Biol., 238(4), 841–862.

    Article  Google Scholar 

  • de Pillis, L. G., Gu, W., Fister, K. R., Head, T., Maples, K., Murugan, A., Neal, T., & Yoshida, K. (2007). Chemotherapy for tumours: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci., 209(1), 292–315.

    Article  MathSciNet  MATH  Google Scholar 

  • de Pillis, L. G., Fister, K. R., Gu, W., Head, T., Maples, K., Neal, T., Murugan, A., & Kozai, K. (2008). Optimal control of mixed immunotherapy and chemotherapy of tumours. J. Biol. Syst., 16(1), 51.

    Article  MATH  Google Scholar 

  • Engelhart, M., Lebiedz, D., & Sager, S. (2011). Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Math. Biosci., 229(1), 123–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Grem, J. (1999). Sequence-dependent antagonism between fluorouracil and paclitaxel in human breast cancer cells. Biochem. Pharmacol., 58(3), 477–486.

    Article  Google Scholar 

  • Isaeva, O. G., & Osipov, V. A. (2009). Different strategies for cancer treatment: mathematical modelling. Comput. Math. Methods Med., 10(4), 253–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: Cancer J. Clin., 61(2), 69–90.

    Article  Google Scholar 

  • Lefever, R., & Erneaux, T. (1984). On the growth of cellular tissue under constant and fluctuating environmental conditions. In W. Ross & A. Lawrence (Eds.), Nonlinear electrodynamics in biological systems (pp. 287–305). New York: Plenum Press.

    Chapter  Google Scholar 

  • Lefever, R., & Garay, R. P. (1978). Local description of immune tumour rejection. In A. J. Valleron & P. D. M. Macdonald (Eds.), Biomathematics and cell kinetics (pp. 333–344). North Holland, Elsevier: Amsterdam.

    Google Scholar 

  • Ludwig, D., Jones, D. D., & Holling, C. S. (1978). Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol., 47(1), 315.

    Article  Google Scholar 

  • Murray, J. D. (Ed.) (2002). Mathematical biology: I. An introduction (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Nowak, A. K., Robinson, B. W. S., & Lake, R. A., (2003). Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumours. Cancer Res., 63(15), 4490–4496.

    Google Scholar 

  • Nowak, A. K., Lake, R. A., & Robinson, B. W. S. (2006). Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv. Drug Deliv. Rev., 58(8), 975–990.

    Article  Google Scholar 

  • Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM national conference (pp. 517–524). doi:10.1145/800186.810616.

    Chapter  Google Scholar 

  • Tallarida, R. J. (2006). An overview of drug combination analysis with isobolograms. Pharmacology, 319(1), 1–7.

    Google Scholar 

  • Tallarida, R. J. (2007). Interactions between drugs and occupied receptors. Pharmacol. Ther., 113(1), 197–209.

    Article  Google Scholar 

  • van Moorsel, C. J., Pinedo, H. M., Veerman, G., Bergman, A. M., Kuiper, C. M., Vermorken, J. B., van der Vijgh, W. J., & Peters, G. J. (1999). Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. Br. J. Cancer, 80(7), 981–990.

    Article  Google Scholar 

  • Voigt, W., Bulankin, A., Muller, T., Schoeber, C., Grothey, A., Hoang-Vu, C., & Schmoll, H.-J. (2000). Schedule-dependent antagonism of gemcitabine and cisplatin in human anaplastic thyroid cancer cell lines. Clin. Cancer Res., 6(5), 2087–2093.

    Google Scholar 

  • Zhang, L., Dermawan, K.-t., Jin, M.-l., Xiong, S.-d., & Chu, Y.-w. (2008). Does chemotherapy augment anti-tumour immunotherapy by preferential impairment of regulatory T cells? Med. Hypotheses, 71(5), 802–804.

    Article  Google Scholar 

  • Zhong, W.-R., Shao, Y.-Z., & He, Z.-H. (2006a). Pure multiplicative stochastic resonance of a theoretical anti-tumour model with seasonal modulability. Phys. Rev. E, 73(6), 060902.

    Article  Google Scholar 

  • Zhong, W.-R., Shao, Y.-Z., & He, Z.-H. (2006b). Spatiotemporal fluctuation-induced transition in a tumour model with immune surveillance. Phys. Rev. E, 74(1), 011916.

    Article  Google Scholar 

  • Zhong, W.-R., Shao, Y.-Z., Li, L., Wang, F.-H., & He, Z.-H. (2008). Spatiotemporal noise triggering infiltrative tumour growth with immunosurveillance. Europhys. Lett., 82(2), 20003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Zhi Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, WY., Zhong, WR., Wang, FH. et al. In Silico Synergism and Antagonism of an Anti-tumour System Intervened by Coupling Immunotherapy and Chemotherapy: A Mathematical Modelling Approach. Bull Math Biol 74, 434–452 (2012). https://doi.org/10.1007/s11538-011-9693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9693-x

Keywords

Navigation