Skip to main content
Log in

Reaction–Diffusion Systems and External Morphogen Gradients: The Two-Dimensional Case, with an Application to Skeletal Pattern Formation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate a reaction–diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction–diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction–diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S., & Joyner, A. L. (2004). Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell, 118, 505–516.

    Article  Google Scholar 

  • Alber, M. S., Glimm, T., Hentschel, H. G. E., Kazmierczak, B., & Newman, S. A. (2005). Stability of n-dimensional patterns in a generalized Turing system: implications for biological pattern formation. Nonlinearity, 18, 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Alber, M., Glimm, T., Hentschel, H. G. E., Kazmierczak, B., Zhang, Y.-T., Zhu, J., & Newman, S. A. (2008). The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bull. Math. Biol., 70(2), 460–483.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhat, R., Lerea, K. M., Peng, H., Kaltner, H., Gabius, H.-J., & Newman, S. A. (2011). A regulatory network of two galectins mediates the earliest steps of avian limb skeletal morphogenesis. BMC Dev. Biol., 11, 6.

    Article  Google Scholar 

  • Borckmans, A., De Wit, A., & Dewel, G. (1992). Competition in ramped Turing structures. Physica A, 188, 137–157.

    Article  Google Scholar 

  • Bouldin, C. M., Gritli-Linde, A., Ahn, S., & Harfe, B. D. (2010). Shh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning. Proc. Natl. Acad. Sci. USA, 107, 5489–5494.

    Article  Google Scholar 

  • Cickovski, T. M., Huang, C., Chaturvedi, R., Glimm, T., Hentschel, H. G., Alber, M. S., Glazier, J. A., Newman, S. A., & Izaguirre, J. A. (2005). A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinform., 2, 273–288.

    Article  Google Scholar 

  • Ermentrout, B. (1991). Stripes or spots? Nonlinear effects in bifurcation of reaction–diffusion equations on the square. Proc. R. Soc. Lond. Ser. A, 434(1891), 413–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Forgacs, G., & Newman, S. (2005). Biological physics of the developing embryo. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Glimm, T., Zhang, J., & Shen, Y.-Q. (2009). Interaction of Turing patterns with an external linear morphogen gradient. Nonlinearity, 22(10), 2541–2560.

    Article  MathSciNet  MATH  Google Scholar 

  • Harfe, B. D., Scherz, P. J., Nissim, S., Tian, H., McMahon, A. P., & Tabin, C. J. (2004). Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell, 118, 517–528.

    Article  Google Scholar 

  • Hentschel, H. G. E., Glimm, T., Glazier, J.A., & Newman, S.A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B, Biol. Sci., 271(1549), 1713–1722.

    Article  Google Scholar 

  • Klopocki, E., Ott, C. E., Benatar, N., Ullmann, R., Mundlos, S., & Lehmann, K. (2008). A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J. Med. Genet., 45, 370–375.

    Article  Google Scholar 

  • Miura, T., Shiota, K., Morriss-Kay, G., & Maini, P. K. (2006). Mixed-mode pattern in doublefoot mutant mouse limb-Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol., 240, 562–573.

    Article  MathSciNet  Google Scholar 

  • Murray, J. D. (2002). Interdisciplinary applied mathematics: Vol. 17. Mathematical biology. I (3rd ed.). New York: Springer.

    Google Scholar 

  • Newman, S. A., & Bhat, R. (2007). Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res. C, Embryo Today, 81, 305–319.

    Article  Google Scholar 

  • Newman, S. A., & Frisch, H. L. (1979). Dynamics of skeletal pattern formation in developing chick limb. Science, 205, 662–668.

    Article  Google Scholar 

  • Newman, S. A., Christley, S., Glimm, T., Hentschel, H. G., Kazmierczak, B., Zhang, Y. T., Zhu, J., & Alber, M. (2008). Multiscale models for vertebrate limb development. Curr. Top. Dev. Biol., 81, 311–340.

    Article  Google Scholar 

  • Page, K., Maini, P. K., & Monk, N. A. M. (2003). Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D, 181(1-2), 80–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Page, K. M., Maini, P. K., & Monk, N. A. M. (2005). Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D, 202(1–2), 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Riddle, R. D., Johnson, R. L., Laufer, E., & Tabin, C. (1993). Sonic hedgehog mediates the polarizing activity of the ZPA. Cell, 75, 1401–1416.

    Article  Google Scholar 

  • Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science, 314, 1447–1450.

    Article  Google Scholar 

  • Sun, M., Ma, F., Zeng, X., Liu, Q., Zhao, X. L., Wu, F. X., Wu, G. P., Zhang, Z. F., Gu, B., Zhao, Y. F., Tian, S. H., Lin, B., Kong, X. Y., Zhang, X. L., Yang, W., Lo, W. H., & Zhang, X. (2008). Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J. Med. Genet., 45, 589–595.

    Article  Google Scholar 

  • Tickle, C. (2006). Making digit patterns in the vertebrate limb. Nat. Rev. Mol. Cell Biol., 7, 45–53.

    Article  Google Scholar 

  • Towers, M., & Tickle, C. (2009). Generation of pattern and form in the developing limb. Int. J. Dev. Biol., 53, 805–812.

    Article  Google Scholar 

  • Towers, M., Mahood, R., Yin, Y., & Tickle, C. (2008). Integration of growth and specification in chick wing digit-patterning. Nature, 452, 882–886.

    Article  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. B, 237, 37–72.

    Article  Google Scholar 

  • Wieczorek, D., Pawlik, B., Li, Y., Akarsu, N. A., Caliebe, A., May, K. J., Schweiger, B., Vargas, F. R., Balci, S., Gillessen-Kaesbach, G., & Wollnik, B. (2010). A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum. Mutat. 31, 81–89.

    Article  Google Scholar 

  • Wolpert, L., Beddington, R., Brockes, J., & Meyerowitz, E. (2002). Principles of development. London: Oxford University Press.

    Google Scholar 

  • Zeller, R., Lopez-Rios, J., & Zuniga, A. (2009). Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet., 10, 845–858.

    Article  Google Scholar 

  • Zeng, X., Goetz, J. A., Suber, L. M., Scott, W. J., Schreiner, C. M., & Robbins, D. J. (2001). A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature, 411, 716–720.

    Article  Google Scholar 

  • Zhu, J., Zhang, Y. T., Alber, M. S., & Newman, S. A. (2010). Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS ONE, 5, e10892.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Glimm.

Additional information

Glimm and Zhang are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glimm, T., Zhang, J., Shen, YQ. et al. Reaction–Diffusion Systems and External Morphogen Gradients: The Two-Dimensional Case, with an Application to Skeletal Pattern Formation. Bull Math Biol 74, 666–687 (2012). https://doi.org/10.1007/s11538-011-9689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9689-6

Keywords

Navigation