Skip to main content
Log in

Phenotype Switching and Mutations in Random Environments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cell populations can benefit from changing phenotype when the environment changes. One mechanism for generating these changes is stochastic phenotype switching, whereby cells switch stochastically from one phenotype to another according to genetically determined rates, irrespective of the current environment, with the matching of phenotype to environment then determined by selective pressure. This mechanism has been observed in numerous contexts, but identifying the precise connection between switching rates and environmental changes remains an open problem. Here, we introduce a simple model to study the evolution of phenotype switching in a finite population subject to random environmental shocks. We compare the successes of competing genotypes with different switching rates, and analyze how the optimal switching rates depend on the frequency of environmental changes. If environmental changes are as rare as mutations, then the optimal switching rates mimic the rates of environmental changes. If the environment changes more frequently, then the optimal genotype either maximally favors fitness in the more common environment or has the maximal switching rate to each phenotype. Our results also explain why the optimum is relatively insensitive to fitness in each environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, M., Mettetal, J. T., & van Oudenaarden, A. (2008). Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet., 40, 471–475.

    Article  Google Scholar 

  • Avery, S. V. (2006). Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev., Microbiol., 4, 577–587.

    Article  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  Google Scholar 

  • Ben-Porath, E., Dekel, E., & Rustichini, A. (1993). On the relationship between mutation rates and growth rates in a changing environment. Games Econ. Behav., 5, 576–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger, R., Willensdorfer, M., & Nowak, M. A. (2006). Why are phenotypic mutation rates much higher than genotypic mutation rates? Genetics, 172, 197–206.

    Article  Google Scholar 

  • Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theor. Biol., 12, 119–129.

    Article  Google Scholar 

  • DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends Ecol. Evol., 13, 77–81.

    Article  Google Scholar 

  • Donaldson-Matasci, M. C., Lachmann, M., & Bergstrom, C. T. (2008). Phenotypic diversity as an adaptation to environmental uncertainty. Evol. Ecol. Res., 10, 493–515.

    Google Scholar 

  • Fiedler, M. (1986). Special matrices and their applications in numerical mathematics. Dordrecht: Martinus Nijhoff.

    Book  MATH  Google Scholar 

  • Foster, D., & Young, P. (1990). Stochastic evolutionary game dynamics. Theor. Popul. Biol., 38, 219–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Freidlin, M. I., & Wentzell, A. D. (1998). Random perturbations of dynamical systems (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Fudenberg, D., & Harris, C. (1992). Evolutionary dynamics with aggregate shocks. J. Econ. Theory, 57, 420–441.

    Article  MathSciNet  MATH  Google Scholar 

  • Fudenberg, D., & Imhof, L. A. (2006). Imitation processes with small mutations. J. Econ. Theory, 131, 251–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Fudenberg, D., & Imhof, L. A. (2008). Monotone imitation dynamics in large populations. J. Econ. Theory, 140, 229–245.

    Article  MATH  Google Scholar 

  • Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Fudenberg, D., Nowak, M. A., Taylor, C., & Imhof, L. A. (2006). Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theor. Popul. Biol., 70, 352–363.

    Article  MATH  Google Scholar 

  • Gillespie, J. H. (1974). Natural selection for within-generation variance in offspring number. Genetics, 76, 601–606.

    MathSciNet  Google Scholar 

  • Harmer, G. P., & Abbott, D. (2002). A review of Parrondo’s paradox. Fluct. Noise Lett., 2, R71–R107.

    Article  Google Scholar 

  • Ibba, M., & Söll, D. (1999). Quality control mechanisms during translation. Science, 286, 1893–1897.

    Article  Google Scholar 

  • Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2005). Evolutionary cycles of cooperation and defection. Proc. Natl. Acad. Sci. USA, 102, 10797–10800.

    Article  Google Scholar 

  • Ishii, K., Matsuda, H., Iwasa, Y., & Sasaki, A. (1989). Evolutionarily stable mutation rate in a periodically changing environment. Genetics, 121, 163–174.

    Google Scholar 

  • Jablonka, E., Oborny, B., Molnár, I., Kisdi, É., Hofbauer, J., & Czárán, T. (1995). The adaptive advantage of phenotypic memory in changing environments. Philos. Trans. R. Soc. Lond. Ser. B, 350, 133–141.

    Article  Google Scholar 

  • Kandori, M., Mailath, G. J., & Rob, R. (1993). Learning, mutation, and long run equilibria in games. Econometrica, 61, 29–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Kimura, M. (1967). On the evolutionary adjustment of spontaneous mutation rates. Genet. Res., 9, 23–34.

    Article  Google Scholar 

  • King, O. D., & Masel, J. (2007). The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol., 72, 560–575.

    Article  MATH  Google Scholar 

  • Kussell, E., & Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309, 2075–2078.

    Article  Google Scholar 

  • Kussell, E., Kishony, R., Balaban, N. Q., & Leibler, S. (2005). Bacterial persistence: A model of survival in changing environments. Genetics, 169, 1807–1814.

    Article  Google Scholar 

  • Lachmann, M., & Jablonka, E. (1996). The inheritance of phenotypes: An adaptation to fluctuating environments. J. Theor. Biol., 181, 1–9.

    Article  Google Scholar 

  • Leigh, E. (1970). Natural selection and mutability. Am. Nat., 104, 301–305.

    Article  Google Scholar 

  • Levins, R. (1968). Evolution in changing environments. Princeton: Princeton University Press.

    Google Scholar 

  • Livnat, A., Pacala, S. W., & Levin, S. A. (2005). The evolution of intergenerational discounting in offspring quality. Am. Nat., 165, 311–321.

    Article  Google Scholar 

  • Maamar, H., Raj, A., & Dubnau, D. (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science, 317, 526–529.

    Article  Google Scholar 

  • Philippi, T., & Seger, J. (1989). Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol., 4, 41–44.

    Article  Google Scholar 

  • Rosenberg, S. M. (2001). Evolving responsively: Adaptive mutation. Nat. Rev. Genet., 2, 504–515.

    Article  Google Scholar 

  • Samuelson, L. (1997). Evolutionary games and equilibrium selection. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Sandholm, W. (2009). Evolutionary game theory. In R. A. Meyers (Ed.), Encyclopedia of complexity and system science (pp. 3176–3205). Berlin: Springer.

    Google Scholar 

  • Slatkin, M. (1974). Hedging one’s evolutionary bets. Nature, 250, 704–705.

    Google Scholar 

  • Stumpf, M. P. H., Laidlaw, Z., & Jansen, V. A. A. (2002). Herpes viruses hedge their bets. Proc. Natl. Acad. Sci. USA, 99, 15234–15237.

    Article  Google Scholar 

  • Süel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J., & Elowitz, M. B. (2007). Tunability and noise dependence in differentiation dynamics. Science, 315, 1716–1719.

    Article  Google Scholar 

  • Thattai, M., & van Oudenaarden, A. (2004). Stochastic gene expression in fluctuating environments. Genetics, 167, 523–530.

    Article  Google Scholar 

  • Thomas, M. J., Platas, A. A., & Hawley, D. K. (1998). Transcriptional fidelity and proofreading by RNA polymerase II. Cell, 93, 627–637.

    Article  Google Scholar 

  • True, H. L., & Lindquist, S. L. (2000). A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature, 407, 477–483.

    Article  Google Scholar 

  • Tuljapurkar, S. (1990). Population dynamics in variable environments. New York: Springer.

    MATH  Google Scholar 

  • Wu, B., Gokhale, C. S., Wang, L., & Traulsen, A. (2011). How small are small mutation rates? J. Math. Biol., to appear.

  • Young, H. P. (1993). The evolution of conventions. Econometrica, 61, 57–84.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorens A. Imhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fudenberg, D., Imhof, L.A. Phenotype Switching and Mutations in Random Environments. Bull Math Biol 74, 399–421 (2012). https://doi.org/10.1007/s11538-011-9687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9687-8

Keywords

Navigation