Skip to main content
Log in

A Modified Hai–Murphy Model of Uterine Smooth Muscle Contraction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We extend and analyze the Wang and Politi modified Hai–Murphy model of smooth muscle cell contractions to capture uterine muscle cell response to variations in intracellular calcium concentrations. This model is used to estimate values of unknown parameters in uterine smooth muscle cell cross-bridging. Uterine motility is responsible for carrying out important processes throughout all phases of the nonpregnant female reproductive cycle, including sperm transport, menstruation, and embryo implantation. The modified Hai–Murphy partial differential equation model accounts for the displacement of myosin cross-bridge heads relative to their binding sites. This model was originally developed for the study of airway contractions; we now extended it for use in modeling nonisometric uterine contractions. Our extended model incorporates cross-bridge position and contractile velocity into the original model, resulting in more accurate modeling of the initial stages of contraction and modeling nonisometric contractions. Numerical simulations show that the contraction rate in our extended model is faster than the original Hai–Murphy model. These simulations provide quantitative estimates for the increased level of responsiveness of our extended model to intracellular calcium concentrations. The extended model and new parameter estimates for the cross-bridging can be coupled with uterine flow models to advance our understanding of embryonic motility and intrauterine flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, F., Pare, P. D., & Seow, C. Y. (2005). Models of contractile units and their assembly in smooth muscle. Can. J. Physiol. Pharm., 83(10), 825–831. LR: 20061115; JID: 0372712; 0 (Actins); EC 3.6.1.4 (Myosins); RF: 40; ppublish.

    Article  Google Scholar 

  • Burdyga, T., Borisova, L., Burdyga, A. T., & Wray, S. (2009). Temporal and spatial variations in spontaneous Ca events and mechanical activity in pregnant rat myometrium. Eur. J. Obstet., Gynecol., Reprod. Biol., 144(Suppl. 1), S25–S32. Supplement: Reproductive Bioengineering 2008.

    Article  Google Scholar 

  • Bursztyn, L., Eytan, O., Jaffa, A. J., & Elad, D. (2007). Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am. J. Physiol., Cell Physiol., 292(5), C1816–C1829.

    Article  Google Scholar 

  • Hai, C. M., & Murphy, R. A. (1988). Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol., 254(1 Pt 1), C99–C106. LR: 20071114; GR: HL-19242/HL/NHLBI NIH HHS/United States; JID: 0370511; EC 2.7.1.117 (Myosin-Light-Chain Kinase); EC 3.6.1.4 (Myosins); ppublish.

    Google Scholar 

  • Herrera, A. M., McParland, B. E., Bienkowska, A., Tait, R., Paré, P. D., & Seow, C. Y. (2005). Sarcomeres of smooth muscle: functional characteristics and ultrastructural evidence. J. Cell Sci., 118, 2381–2392.

    Article  Google Scholar 

  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7, 255–318.

    Google Scholar 

  • JT, F., RM, S., & JA, S. (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature, 368, 113–119.

    Article  Google Scholar 

  • Keener, J., & Sneyd, J. (2008). Mathematical physiology. Berlin: Springer (2nd edn.).

    Google Scholar 

  • Kunz, G., Deininger, H., Wildt, L., & Leyendecker, G. (1996). The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum. Reprod., 11, 627–632.

    Google Scholar 

  • Kupittayanant, S., Luckas, M., & Wray, S. (2002). Effect of inhibiting the sarcoplasmic reticulum on spontaneous and oxytocin-induced contractions of human myometrium. BJOG: Int. J. Obstet. Gynaecol., 109(3), 289–296.

    Article  Google Scholar 

  • Leyendecker, G., Kunz, G., Wildt, L., Beil, D., & Deininger, H. (1996). Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum. Reprod., 11(7), 1542–1551.

    Google Scholar 

  • Lyons, E., Taylor, P., & Zheng, X. H. (1991). Characterization of subendometrial myometrial contractions throughout the menstrual cycle in normal fertile women. Fertil. Steril., 55(4), 771–774.

    Google Scholar 

  • Mardon, H., Grewal, S., & Mills, K. (2007). Experimental models for investigating implantation of the human embryo. Semin. Reprod. Med., 25, 410–417.

    Article  Google Scholar 

  • Murphy, R. (1994). What is special about smooth muscle? The significance of covalent crossbridge regulation. FASEB J., 8(3), 311–318.

    Google Scholar 

  • Parkington, H. C., Tonta, M. A., Brennecke, S. P., & Coleman, H. A. (1999). Contractile activity membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labor. Am. J. Obstet. Gynecol., 181(6), 1445–1451.

    Article  Google Scholar 

  • Shmigol, A. V., Eisner, D. A., & Wray, S. (2001). Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic [Ca2+] in rat uterine smooth muscle cells. J. Physiol., 531(3), 707–713.

    Article  Google Scholar 

  • Shmygol, A., Blanks, A. M., Bru-Mercier, G., Gullam, J. E., & Thornton, S. (2007). Control of uterine Ca2+ by membrane voltage. Ann. N.Y. Acad. Sci., 1101, 97–109.

    Article  Google Scholar 

  • Tang, D. C., Stull, J. T., Kubota, Y., & Kamm, K. E. (1992). Regulation of the Ca2+ dependence of smooth muscle contraction. J. Biol. Chem., 267(17), 11839–11845.

    Google Scholar 

  • Tonino, P., Simon, M., & Craig, R. (2002). Mass determination of native smooth muscle myosin filaments by scanning transmission electron microscopy. J. Mol. Biol., 318, 999–1007.

    Article  Google Scholar 

  • Wang, I., Politi, A. Z., Tania, N., Bai, Y., Sanderson, M. J., & Sneyd, J. (2008). A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J., 94(6), 2053–2064. LR: 20090317; JID: 0370626; 7440-70-2 (Calcium); EC 3.1.3.53 (Myosin-Light-Chain Phosphatase); OID: NLM: PMC2257911; 2007/12/07 [aheadofprint]; ppublish.

    Article  Google Scholar 

  • Word, R., Tang, D., & Kamm, K. (1994). Activation properties of myosin light chain kinase during contraction/relaxation cycles of tonic and phasic smooth muscles. J. Biol. Chem., 269, 21596–21602.

    Google Scholar 

  • Wray, S. (2007). Insights into the uterus. Exp. Physiol., 92(4), 621–631.

    Article  Google Scholar 

  • Yaniv, S., Jaffa, A. J., Eytan, O., & Elad, D. (2009). Simulation of embryo transport in a closed uterine cavity model. Eur. J. Obstet., Gynecol., Reprod. Biol., 144(Suppl. 1), S50–S60. Supplement: Reproductive Bioengineering 2008.

    Article  Google Scholar 

  • Young, R. C. (2007). Myocytes, myometrium, and uterine contractions. Ann. N.Y. Acad. Sci., 1101, 72–84. JID: 7506858; RF: 12; 2007/04/18 [aheadofprint]; ppublish.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Maggio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggio, C.D., Jennings, S.R., Robichaux, J.L. et al. A Modified Hai–Murphy Model of Uterine Smooth Muscle Contraction. Bull Math Biol 74, 143–158 (2012). https://doi.org/10.1007/s11538-011-9681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9681-1

Keywords

Navigation