Skip to main content
Log in

B7-H1 and a Mathematical Model for Cytotoxic T Cell and Tumor Cell Interaction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The surface protein B7-H1, also called PD-L1 and CD274, is found on carcinomas of the lung, ovary, colon, and melanomas but not on most normal tissues. B7-H1 has been experimentally determined to be an antiapoptotic receptor on cancer cells, where B7-H1-positive cancer cells have been shown to be immune resistant, and in vitro experiments and mouse models have shown that B7-H1-negative tumor cells are significantly more susceptible to being repressed by the immune system. We derive a new mathematical model for studying the interaction between cytotoxic T cells and tumor cells as affected by B7-H1. By integrating experimental data into the model, we isolate the parameters that control the dynamics and obtain insights on the mechanisms that control apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular biology of the cell (5th ed.). New York: Garland Science.

    Google Scholar 

  • Azuma, T., Yao, S., Gefeng, Z., Flies, A. S., Flies, S. J., & Chen, L. (2008). B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood, 111(7), 3635–3643.

    Article  Google Scholar 

  • Bellomo, N., Bellouquid, A., & DeAngelis, E. (2003). The modelling of the immune competition by generalized kinetic (Boltzmann) models: review and research perspectives. Math. Comput. Model., 37, 65–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, R., Rotem-Yehudar, R., Slama, G., Landes, S., Kneller, A., Leiba, M., Koren-Michowitz, M., Shimoni, A., & Nagler, A. (2008). Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advances hematologic malignancies. Clin. Cancer Res., 14, 3044–3051.

    Article  Google Scholar 

  • Chen, L. (2004). Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol., 4, 336–347.

    Article  Google Scholar 

  • de Pillis, L. G., Radunskaya, A. E., & Wiseman, C. L. (2005). A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res., 65(17), 7950–7958.

    Google Scholar 

  • Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hiaro, F., Flies, D. B., Roche, P. C., Lu, J., & Zhu, G. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med., 8(8), 793–800.

    Google Scholar 

  • Ebelt, K., Babaryka, G., Frankenberger, B., Stief, C. G., Eisenmenger, W., Kirchner, T., Schendel, D. J., & Noessner, E. (2009). Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters. Eur. J. Cancer, 45(9), 1664–1672.

    Article  Google Scholar 

  • Golovchenko, E. N., Hanin, L. G., Kaufmann, S. H., Tyurin, K. V., & Khanin, M. A. (2008). Dynamics of granzyme B-induced apoptosis: mathematical modeling. Math. Biosci., 212, 54–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Hirano, F., Katsumi, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M., Rietz, C., Flies, D. B., Lau, J. S., Zhu, G., Tamada, K., & Chen, L. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res., 65(3), 1089–1096.

    Google Scholar 

  • Jeong, H. Y., Lee, Y. J., Seo, S. K., Lee, S. W., Park, S. J., Lee, J. N., Sohn, H. S., Yao, S., Chen, L., & Choi, I. (2008). Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection. J. Leukoc. Biol., 83(3), 755–764.

    Article  Google Scholar 

  • Kirschner, D., & Panetta, J. C. (1998). Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol., 37, 235–252.

    Article  MATH  Google Scholar 

  • Lai, R., & Jackson, T. L. (2004). A mathematical model of receptor-mediated apoptosis: dying to know why FasL is a trimer. Math. Biosci. Eng., 1(2), 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Russell, J. H., & Ley, T. J. (2002). Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol., 20, 323–370.

    Article  Google Scholar 

  • Thorn, R. M., & Henney, C. S. (1976). Kinetic analysis of target cell destruction by effector T cells: I. Delineation of parameters related to the frequency and lytic efficiency of killer cells. J. Immunol., 117, 2213–2219.

    Google Scholar 

  • Webb, S., Sherratt, J. A., & Fish, R. G. (2002). Cells behaving badly: a theoretical model for the Fas/FasL system in tumour immunology. Math. Biosci., 179, 113–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberg, R. A. (2007). The biology of cancer. New York: Garland Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galante, A., Tamada, K. & Levy, D. B7-H1 and a Mathematical Model for Cytotoxic T Cell and Tumor Cell Interaction. Bull Math Biol 74, 91–102 (2012). https://doi.org/10.1007/s11538-011-9665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9665-1

Keywords

Navigation