Skip to main content

Advertisement

Log in

A Mathematical Model for the Effects of HER2 Over-Expression on Cell Cycle Progression in Breast Cancer

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we present a mathematical model predicting the fraction of proliferating cells in G1, S, and G2/M phases of the cell cycle as a function of EGFR and HER2. We show that it is possible to find parameters for the mathematical model so that its predictions agree with the experimental observations that HER2 over-expression results in: (1) a shorter G1-phase and early S-phase entry; (2) and that with a 1-to-1 ration between EGFR and HER2, the growth advantage in HER2 over-expressing cells is indeed associated with the increase of the HER2 expression level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (2002). Cell growth and disvision. In Molecular biology and cell biology (4th ed.). New York: Garland.

    Google Scholar 

  • Araujo, R. P., & Mcelwain, D. L. S. (2004). A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol., 66, 1039–1091.

    Article  MathSciNet  Google Scholar 

  • Arino, O., Sanchez, E., & Webb, G. F. (1997). Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence. J. Math. Anal. Appl., 215(2), 15.

    Article  MathSciNet  Google Scholar 

  • Baselga, J. (2001). Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology Suppl., 61( 2), 14–21

    Google Scholar 

  • Baselga, J., Perez, E. A., Pienkowski, T., & Bell, R. (2006). Adjuvant trastuzumab: a milestone in the treatment of HER-2-positive early breast cancer. Oncologist., 11.

  • Basse, B., Baguley, B., Marshall, E., Wake, G., & Wall, D. (2005). Modelling the flow cytometric data obtained from unperturbed human tumour cell lines: Parameter fitting and comparison. Bull. Math. Biol., 67(4), 815–830.

    Article  MathSciNet  Google Scholar 

  • Basse, B., & Ubezio, P. (2007). A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Bull. Math. Biol., 69(5), 1673–1690.

    Article  MathSciNet  MATH  Google Scholar 

  • Bischoff, K. B., Himmelstein, K. J., Dedrick, R. L., & Zaharko, D. S. (1973). Pharmacokinetics and cell population growth models in cancer chemotherapy. Chem. Eng. Med., 1, 47–64.

    Article  Google Scholar 

  • Brennan, P. J., et al. (2000). HER2/neu: mechanisms of dimerization/oligomerization. Oncogene, 19, 6093–6101.

    Article  Google Scholar 

  • Brikci, F. B., Clairambault, J., & Perthame, B. (2008). Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Model., 47(7–8), 699–713.

    Article  MATH  Google Scholar 

  • Cai, Z., Zhang, G., Zhou, Z., Bembas, K., Drebin, J. A., Greene, M. I., & Zhang, H. (2008). Differential binding patterns of monoclonal antibody 2C4 to the ErbB3-p185her2/neu and the EGFR-p185her2/neu complexes. Oncogene, 27, 3870–3874.

    Article  Google Scholar 

  • Cojocaru, L., & Agur, Z. (1992). A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. Biosci., 109(1), 85–97.

    Article  MATH  Google Scholar 

  • Difiore, P. P., Pierce, J. H., Kraus, M. H., Segatto, O., King, C. R., & Aaronson, S. A. (1987). ErbB-2 is a potent oncogene when overexpressed in NIH 3T3 cells. Science, 237, 178–182.

    Article  Google Scholar 

  • Eladdadi, A., & Isaacson, D. (2008). A mathematical model for the effects of her2 over-expression on the cell proliferation in breast cancer. Bull. Math. Biol., 70(6), 1707–1729.

    Article  MathSciNet  MATH  Google Scholar 

  • Gorelik, B., Ziv, I., Shohat, R., Wick, M., Webb, C., Hankins, D., Sidransky, D., & Agur, Z. (2008). Efficacy of once weekly docetaxel combined with bevacizumab for patients with intense angiogenesis: validation of a new theranostic method in mesenchymal chondrosarcoma xenografs. Cancer Res., 68(21), 9033–9040.

    Article  Google Scholar 

  • Graus-Porta, D., et al. (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J., 16, 1647–55.

    Article  Google Scholar 

  • Harris, R. A., Eichholtz, T. J., Hiles, I. D., Page, M. J., & O’Hare, M. J. (1999). New model of ErbB-2 overexpression in fhuman mammary luminal epithelial cells. Int. J. Cancer, 80, 477–484.

    Article  Google Scholar 

  • Hendriks, B., Opresko, L. K., Wiley, H. S., & Lauffenburger, D. A. (2003a). Quantitative analysis of HER2-mediated effects on HER2 and EGFR endocytosis: distribution of homo- and hetero-dimers depends on relative HER2 levels. J. Biol. Chem., 278, 23343–23351.

    Article  Google Scholar 

  • Hendriks, B., Wiley, H. S., & Lauffenburger, D. A. (2003b). HER2-mediated effects on EGFR endosomal sorting: analysis of biophyical mechanisms. Biophys. J., 85, 2732–2745.

    Article  Google Scholar 

  • Hendriks, B. S., Orr, G., Wells, A., Wiley, H. S., & Lauffenburger, D. A. (2005). Parsing ERK activation reveals quantitatively equivalent contributions from EGFR and HER2 in human mammary epithelial cells. J. Biol. Chem., 280, 6157–6169.

    Article  Google Scholar 

  • Howard, A., & Pelc, S. R. (1951). Nuclear incorporation of 32P as demonstrated by autoradiographs. Exp. Cell Res., 2, 178–187.

    Article  Google Scholar 

  • Hynes, N. E. (2005). Lane HA ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 5, 341–354.

    Article  Google Scholar 

  • Hynes, N. E., Horsch, K., Olayioye, MA, & Badache, A. (2001). The ErbB receptor tyrosine family as signal integrators. Endocr. Relat. Cancer, 8, 151–159.

    Article  Google Scholar 

  • Klapper, L. N., Glathe, S., Vaisman, N., Hynes, N. E., Andrews, G. C., Sela, M., & Yarden, Y. (1999). The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. PNAS, 96(9), 4995–5000.

    Article  Google Scholar 

  • Lane, H. A., Motoyama, A. B., Beuvink, I., et al. (2001). Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 signaling. Ann. Oncol. Suppl., 12(1), S21–S22.

    Article  Google Scholar 

  • Le, X. F., Claret, F.-X., Lammayot, A., Tian, L., Deshpande, D., LaPushin, R., Tari, A. M., & Bast, R. C. Jr. (2003). The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J. Biol. Chem., 278, 23441–23450.

    Article  Google Scholar 

  • Le, X. F., Pruefer, F., & Bast, R. (2005). HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle, 4(1), 87–95.

    Article  Google Scholar 

  • Neve, R. M., Sutterluty, H., Pullen, N., Lane, H. A., Daly, J. M., Krek, W., & Hynes, N. E. (2000). Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene, 19(13), 1647–1656.

    Article  Google Scholar 

  • Riese, D. J., & Stern, D. F. (1998). Specificity within the EGF family/ErbB receptor family signaling network. BioEssays, 20, 41–48.

    Article  Google Scholar 

  • Salomon, D. S., Brandt, R., Ciardiello, F., et al. (1995). Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol./Hematol., 19, 183–232.

    Article  Google Scholar 

  • Shapiro, H. M. (2003). Practical flow cytometry (4th ed.). Hoboken: Wiley-Liss.

    Book  Google Scholar 

  • Slamon, D. J., Clark, G. M., Wong, S. G., et al. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177–182.

    Article  Google Scholar 

  • Spector, N. L., Xia, W., Burris, H., Hurwitz, H., Dees, E. C., Dowlati, A., O’Neil, B., Overmoyer, B., Marcom, P. K., Blackwell, K. L., Smith, D. A., Koch, K. M., Stead, A., Mangum, S., Ellis, M. J., Liu, L., Man, A. K., Bremer, T. M., Harris, J., & Bacus, S. (2005). Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol., 23, 2502–2512.

    Article  Google Scholar 

  • Steel, G. G. (1977). Growth kinetics of tumors: cell population kinetics in relation to the growth and treatment of cancer. Oxford: Clarendon.

    Google Scholar 

  • Takahashi, M. (1968). Theoretical basis for cell cycle analysis II: further studies on labelled mitosis wave method. J. Theor. Biol., 18, 195–209.

    Article  Google Scholar 

  • Timms, J. F., White, S. L., O’Hare, M. J., & Waterfield, M. D. (2002). Effects of ErbB-2 overexpression on mitogenic signalling and cell cycle progression in human breast luminal epithelial cells. Oncogen, 21(43), 6573–6586.

    Article  Google Scholar 

  • Worthylake, R., Opresko, L. K., & Wiley, H. S. (1999). ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J. Biol. Chem., 274(13), 8865–8874.

    Article  Google Scholar 

  • Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2, 127–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Eladdadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eladdadi, A., Isaacson, D. A Mathematical Model for the Effects of HER2 Over-Expression on Cell Cycle Progression in Breast Cancer. Bull Math Biol 73, 2865–2887 (2011). https://doi.org/10.1007/s11538-011-9663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9663-3

Keywords

Navigation