Skip to main content

Advertisement

Log in

Modelling the Role of Tax Expression in HTLV-I Persistence in vivo

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterized by life-long infection and risk of developing HAM/TSP, a progressive neurological and inflammatory disease, and adult T-cell leukemia (ATL). Chronically infected individuals often harbor high proviral loads despite maintaining a persistently activated immune response. Based on a new hypothesis for the persistence of HTLV-I infection, a three-dimensional compartmental model is constructed that describes the dynamic interactions among latently infected target cells, target-cell activation, and immune responses to HTLV-I, with an emphasis on understanding the role of Tax expression in the persistence of HTLV-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asquith, B., Zhang, Y., Mosley, A. J., de Lara, C. M., Wallace, D. L., Worth, A., Kaftantzi, L., Meekings, K., Griffin, G. E., Tanaka, Y., Tough, D. F., Beverly, P. C., Taylor, G. P., Macallan, D., & Bangham, C. R. M. (2007). In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection. Proc. Natl. Acad. Sci. USA, 104, 8035–8040.

    Article  Google Scholar 

  • Asquith, B., & Bangham, C. R. M. (2007). Quantifying HTLV-I dynamics. Immunol. Cell Biol., 85, 280–286.

    Article  Google Scholar 

  • Asquith, B., Mosley, A. J., Barfield, A., Marshall, S. E. F., Heaps, A., Goon, P., Hanon, E., Tanaka, Y., Taylor, G., & Bangham, C. R. M. (2005). A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. J. Gen. Virol., 86, 1515–1523.

    Article  Google Scholar 

  • Asquith, B., & Bangham, C. R. M. (2008). How does HTLV-I persist despite a strong cell-mediated immune response? Trends Immunol., 29, 4–11.

    Article  Google Scholar 

  • Bangham, C. R. M. (2000). HTLV-1 infections. J. Clin. Pathol., 53, 581–586.

    Article  Google Scholar 

  • Bangham, C. R. M., Meekings, K., Toulza, F., Nejmeddine, M., Majorovits, E., Asquith, B., & Taylor, G. (2009). The immune control of HTLV-I infection: selection forces and dynamics. Front. Biosci., 14, 2889–2903.

    Article  Google Scholar 

  • Bangham, C. R. M., & Osame, M. (2005). Cellular immune response to HTLV-1. Oncogene, 24, 6035–6046.

    Article  Google Scholar 

  • Boxus, M., & Willems, L. (2009). Mechanisms of HTLV-I persistence and transformation. Br. J. Cancer, 101, 1497–1501.

    Article  Google Scholar 

  • Butler, G., & Waltman, P. (1986). Persistence in dynamical systems. J. Differ. Equ., 63, 255–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Coppel, W. A. (1965). Stability and asymptotic behaviour of differential equations. Boston: Heath.

    Google Scholar 

  • Fiedler, M. (1974). Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices. Czechoslov. Math. J., 24, 392–402.

    MathSciNet  Google Scholar 

  • Gallo, R. C. (2005). The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirol, 2, 17–23.

    Article  Google Scholar 

  • Gómez-Acevedo, H., & Li, M. Y. (2005). Backward bifurcation in a model for HTLV-I infection of CD4+ T cells. Bull. Math. Biol., 67, 101–114.

    Article  MathSciNet  Google Scholar 

  • Hirsch, M. W. (1982). Systems of differential equations which are competitive or cooperative. I: limit sets. SIAM J. Math. Anal., 13, 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirschner, D., & Webb, G. F. (1996). A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol., 58, 367–390.

    Article  MATH  Google Scholar 

  • Li, M. Y., & Muldowney, J. S. (1996). A geometric approach to global-stability problems. SIAM J. Math. Anal., 27, 1070–1083.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, M. Y., & Wang, L. (1998). A criterion for stability of matrices. J. Math. Anal. Appl., 225, 249–264.

    Article  MathSciNet  MATH  Google Scholar 

  • Lim, A. G. (2010). Mathematical modelling of HTLV-I infection: a study of viral persistence in vivo. M.Sc. thesis, University of Alberta.

  • Matsuoka, M., & Green, P. L. (2009). The HBZ gene, a key player in HTLV-I pathogenesis. Retrovirol, 6, 71.

    Article  Google Scholar 

  • McCluskey, C. C., & van den Driessche, P. (2004). Global analysis of two tuberculosis models. J. Dyn. Differ. Equ., 16, 139–166.

    Article  MATH  Google Scholar 

  • Meekings, K. N., Leipzig, J., Bushman, F. D., Taylor, G. P., & Bangham, C. R. M. (2008). HTLV-I integration into transcriptionally active genomic regions is associated with proviral expression and with HAM/TSP. PLoS Pathog., 4, e1000027.

    Article  Google Scholar 

  • Mortreux, F., Gabet, A. S., & Wattel, E. (2003). Molecular and cellular aspects of HTLV-I associated leukemogenesis in vivo. Leukemia, 17, 26–38.

    Article  Google Scholar 

  • Mosley, A. J., & Bangham, C. R. M. (2009). A new hypothesis for the pathogenesis of Human T-lymphotropic virus type 1 associated myelopathy/tropical spastic paraparesis. Biosci. Hypotheses, 2, 118–124.

    Article  Google Scholar 

  • Muldowney, J. S. (1990). Compound matrices and ordinary differential equation. Rocky Mt. J. Math., 20, 857–872.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, P. W., Murray, J. D., & Perelson, A. S. (2000). A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci., 163, 201–215.

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak, M. A., & May, R. M. (2000). Virus dynamics: mathematical principles of immunology and virology. London: Oxford University Press.

    MATH  Google Scholar 

  • Perelson, A. S. (1989). Modeling the interaction of the immune system with HIV. In C. Castillo-Chavez (Ed.), Lect. notes biomath: Vol. 83. Mathematical and statistical approaches to AIDS epidemiology (pp. 350–370). Berlin: Springer.

    Google Scholar 

  • Perelson, A. S. (2002). Modelling viral and immune system dynamics. Nat. Rev. Immunol., 2, 28–36.

    Article  Google Scholar 

  • Proietti, F. A., Carneiro-Proietti, A. B. F., Catalan-Soares, B. C., & Murphy, E. L. (2005). Global epidemiology of HTLV-I infection and associated diseases. Oncogene, 24, 6058–6068.

    Article  Google Scholar 

  • Saito, M., Matsuzaki, T., Satou, Y., Yasunaga, J., Saito, K., Arimura, K., Matsuoka, M., & Ohara, Y. (2009). In vivo expression of the HBZ gene of HTLV-I correlates with proviral load, inflammatory markers and disease severity in HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirol, 6, 19.

    Article  Google Scholar 

  • Shiraki, H., Sagara, Y., & Inoue, Y. (2003). Cell-to-cell transmission of HTLV-I. In Two decades of adult T-cell leukemia and HTLV-I research (pp. 303–316). Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Smith, H. L. (1998). Systems of ordinary differential equations which generate an order preserving flow. A survey of results. SIAM Rev., 30, 87–113.

    Article  Google Scholar 

  • Smith, H. L. (1995). Mathematical surveys and monographs: Vol. 41. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Wattel, E., Cavrois, M., Gessain, A., & Wain-Hobson, S. (1996). Clonal expansion of infected cells: a way of life for HTLV-I. J. Acquir. Immune Defic. Syndr., 13, S92–S99.

    Article  Google Scholar 

  • Wodarz, D., Nowak, M. A., & Bangham, C. R. M. (1999). The dynamics of HTLV-I and the CTL response. Immunol. Today, 20, 220–227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron G. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.Y., Lim, A.G. Modelling the Role of Tax Expression in HTLV-I Persistence in vivo. Bull Math Biol 73, 3008–3029 (2011). https://doi.org/10.1007/s11538-011-9657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9657-1

Keywords

Navigation