Skip to main content
Log in

Mathematical Modeling of Axonal Formation Part I: Geometry

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A stochastic model is proposed for the position of the tip of an axon. Parameters in the model are determined from laboratory data. The first step is the reduction of inherent error in the laboratory data, followed by estimating parameters and fitting a mathematical model to this data. Several axonogenesis aspects have been investigated, particularly how positive axon elongation and growth cone kinematics are coupled processes but require very different theoretical descriptions. Preliminary results have been obtained through a series of experiments aimed at isolating the response of axons to controlled gradient exposures to guidance cues and the effects of ethanol and similar substances. We show results based on the following tasks; (A) development of a novel filtering strategy to obtain data sets truly representative of the axon trail formation; (B) creation of a coarse graining method which establishes (C) an optimal parameter estimation technique, and (D) derivation of a mathematical model which is stochastic in nature, parameterized by arc length. The framework and the resulting model allow for the comparison of experimental and theoretical mean square displacement (MSD) of the developing axon. Current results are focused on uncovering the geometric characteristics of the axons and MSD through analytical solutions and numerical simulations parameterized by arc length, thus ignoring the temporal growth processes. Future developments will capture the dynamic growth cone and how it behaves as a function of time. Qualitative and quantitative predictions of the model at specific length scales capture the experimental behavior well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aletta, J. M., & Greene, L. A. (1998). Growth cone configuration and advance: a time lapse study using video-enhanced differential interference contrast microscopy. J. Neurosci., 8, 1425–1435.

    Google Scholar 

  • Argiro, V., Bunge, M. B., & Johnson, M. I. (1984). Correlation between growth form and movement and their dependence on neuronal age. J. Neurosci., 4, 3051–3062.

    Google Scholar 

  • Bastiani, M. J., Raper, J. A., & Goodman, C. S. (1984). Pathfinding by neuronal growth cones in grasshopper embryos. iii. Selective affinity of the g growth cone for the p cells within the a/p fascicle. J. Neurosci., 4, 2311–2328.

    Google Scholar 

  • Betz, T., Lim, D., & Kas, J. A. (2006). Neuronal growth: a bistable stochastic process. Phys. Rev. Lett., 96, 098103.

    Article  Google Scholar 

  • Borisyuk, R., Cooke, T., & Roberts, A. (2008). Stochasticity and functionality of neural systems: Mathematical modelling of axon growth in the spinal cord of tadpole. BioSystems, 93, 101–114.

    Article  Google Scholar 

  • Brodel, P. (1992). The central nervous system: structure and function. New York: Oxford University Press.

    Google Scholar 

  • Brown, A., Wang, L., & Jung, P. (2005). Stochastic simulation of neurofilament transport in axons: The “stop-and-go” hypothesis. Mol. Biol. Cell, 16, 4243–4255.

    Article  Google Scholar 

  • Buettner, H. M. (1996). Analysis of cell-target encounter by random filopodial projections. AlChE J., 42(4), 1127.

    Article  Google Scholar 

  • Chuckowree, J. A., Dickson, T. C., & Vickers, J. C. (2004). Intrinsic regenerative ability of mature cns neurons. Neuroscientist, 10, 280–285.

    Article  Google Scholar 

  • Craciun, G., Brown, A., & Friedman, A. (2005). A dynamical system model of neurofilament transport in axons. J. Theor. Biol., 237(3), 316–322.

    Article  MathSciNet  Google Scholar 

  • de Curtis, I. (2007). Intracellular mechanisms for neuritogenesis. New York: Springer.

    Book  Google Scholar 

  • Dotti, C. G., Sullivan, C. A., & Banker, G. A. (1988). The establishment of polarity by hippocampal neurons in culture. J. Neurosci., 8, 1454–1468.

    Google Scholar 

  • Dunn, G. A., & Brown, A. F. (1987). A unified approach to analysing cell motility. J. Cell Sci., Suppl., 8, 81–108.

    Google Scholar 

  • Engle, E. C. (2010). Human genetic disorders of axon guidance. Cold Spring Harb. Perspect. Biol., 2(3), a001784.

    Article  Google Scholar 

  • Godement, P., Wang, L. C., & Mason, C. A. (1994). Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline. J. Neurosci., 14, 7024–7039.

    Google Scholar 

  • Goodhill, G. J. (1997). Diffusion in axon guidance. Eur. J. Neurosci., 9, 100–108.

    Article  Google Scholar 

  • Goodhill, G. J. (1998). Mathematical guidance for axons. Trends Neurosci., 21, 226–231.

    Article  Google Scholar 

  • Goodhill, G. J., Gu, M., & Urbacj, J. (2004). Predicting axonal response to molecular gradients with a computational model of filopodia dynamics. Neural Comput., 16, 2221–2243.

    Article  MATH  Google Scholar 

  • Goodhill, G. J., Mortimera, D., Feldnera, J., Vaughana, T., Vettera, I., Pujica, Z., Rosoffa, W. J., Burrageb, K., Dayand, P., & Richardsa, L. J. (2009). A Bayesian model predicts the response of axons to molecular gradients. Proc. Natl. Acad. Sci. USA, 106, 296–301.

    Google Scholar 

  • Grilli, M., Ferrari, G. T., Uberti, D., Spano, P., & Memo, M. (2003). Alzheimer’s disease linking neurodegeneration with neurodevelopment. Funct. Neurol., 18, 145–148.

    Google Scholar 

  • Harrison, R. (1907). Observations on the living developing nerve fiber. Anat. Rec., 1, 116–128.

    Article  Google Scholar 

  • Hentschel, H. G. E., & VanOoyen, A. (1999). Models of axon guidance and bundling during development. Proc. R. Soc. B, 266, 2231.

    Article  Google Scholar 

  • Huber, A. B., Kolodkin, A. L., Ginty, D. D., & Cloutier, J.-F. (2003). Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci., 26, 509–563.

    Article  Google Scholar 

  • Ionides, E. L., Fang, K. S., Isseroff, R. R., & Oster, G. F. (2004). Stochastic models for cell motion and taxis. J. Math. Biol., 48, 23–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaethner, R. J., & Stuermer, R. J. (1992). Dynamics of terminal arbor formation and target approach of reinotectal axons in living zebrafish embryos: a time-lapse study of single axons. J. Neurosci., 12, 3257–3271.

    Google Scholar 

  • Katz, M. J., George, E. B., & Gilbert, L. J. (1984). Axonal elongation as a stochastic walk. Cell Motil., 4, 351–370.

    Article  Google Scholar 

  • Kobayashi, T., Terjima, K., Nozumi, M., Igarashi, M., & Akazawa, K. (2010). A stochastic model of neuronal growth cone guidance regulated by multiple sensors. J. Theor. Biol., 266, 712–722.

    Article  Google Scholar 

  • Kramer, P. R. (2005). Brownian motion. In A. Scott (Ed.), Encyclopedia of nonlinear science. New York: Routledge.

    Google Scholar 

  • Krottje, J. K., & Ooyen, A. V. (2007). A mathematical framework for modeling axon guidance. Bull. Math. Biol., 69, 3–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Letourneau, P. C. (1982). Nerve fiber growth and its regulation by extrinsic factors. In N. C. Spitzer (Ed.), Neuronal development. New York: Plenum.

    Google Scholar 

  • Li, G. H., Qin, C. D., & Li, M. H. (1994). On the mechanisms of growth cone locomotion: modeling and computer simulation. J. Theor. Biol., 169, 355–362.

    Article  Google Scholar 

  • Lindsley, T. A., Kerlin, A. M., & Rising, L. J. (2003). Time-lapse analysis of ethanol’s effects on axon growth in vitro. Dev. Brain Res., 30, 191–199.

    Article  Google Scholar 

  • Maskery, S., & Shinbrot, T. (2005). Deterministic and stochastic elements of axonal guidance. Annu. Rev. Biomed. Eng., 7, 187–221.

    Article  Google Scholar 

  • Maskery, S., Buettner, H. M., & Shinbrot, T. (2004). Predicting axonal response to molecular gradients with a computational model of filopodia dynamics. BMC Neurosci., 5, 22.

    Article  Google Scholar 

  • Odde, D. J., & Buettner, H. M. (1998). Autocorrelation function and power spectrum of two-state random processes used in neurite guidance. Biophys. J., 75, 1189–1196.

    Article  Google Scholar 

  • Odde, D. J., Tanaka, E. M., Hawkins, S. S., & Buettner, H. M. (1996). Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnol. Bioeng., 50, 452–461.

    Article  Google Scholar 

  • Ornstein, L. S. (1919). On the Brownian motion. Procesnieuws (Amst.), 21, 96–108.

    Google Scholar 

  • Pearson, Y. (2009). Discrete and continuous stochastic models for neuromorphological data. Rensselaer Polytechnic Institute Library, Dissertation.

  • Pearson, Y., Drew, D., Castronovo, E., & Lindsley, T. (2011, in preparation). Mathematical modeling of axonal formation; part ii: Temporal Growth.

  • Segev, R., & Ben-Jacob, E. (2000). Generic modeling of chemotactic based self-wiring of neural networks. Neural Netw., 13, 185–199.

    Article  Google Scholar 

  • Selmeczi, D., Mosler, S., Hagedorn, P. H., Larsen, N. B., & Flyvbjerg, H. (2005). Cell motility as persistent random motion: theories from experiments. Biophys. J., 89, 912–931.

    Article  Google Scholar 

  • Shinbrot, T., Maskery, S. M., & Buettner, H. M. (2004). Growth cone pathfinding: a competition between deterministic and stochastic events. BMC Neurosci., 5, 22.

    Article  Google Scholar 

  • Siegman, A. E. (1979). Simplified derivation of the Fokker Planck equation. Am. J. Phys., 47, 545–547.

    Article  MathSciNet  Google Scholar 

  • Song, H.-J., & Poo, M.-M. (2001). The cell biology of neuronal navigation. Nat. Cell Biol., 3, E81–E87.

    Article  Google Scholar 

  • VanDemark, K. L., Guizzetti, M., Giordano, G., & Costa, L. G. (2009). Ethanol inhibits muscarinic receptor induced axonal growth in rat hippocampal neurons. Alcohol. Clin. Exp. Res., 33, 1945–1955.

    Article  Google Scholar 

  • Wang, F.-S., Liu, C.-W., Diefenbach, T. J., & Jay, D. G. (2003). Modeling the role of myosin 1c in neuronal growth cone turning. Biophys. J., 85, 3319–3328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanthe E. Pearson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TEX 9.51 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, Y.E., Castronovo, E., Lindsley, T.A. et al. Mathematical Modeling of Axonal Formation Part I: Geometry. Bull Math Biol 73, 2837–2864 (2011). https://doi.org/10.1007/s11538-011-9648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9648-2

Keywords

Navigation