Skip to main content

Advertisement

Log in

From Blood Oxygenation Level Dependent (BOLD) Signals to Brain Temperature Maps

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO 2) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO 2 changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (−0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M. (1991). Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends Neurosci., 25, 621–625.

    Article  Google Scholar 

  • Babajani, A., & Soltanian-Zadeh, H. (2006). Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans. Biomed. Eng., 53, 1794–1801.

    Article  Google Scholar 

  • Babajani, A., Soltanian-Zadeh, H., & Moran, J. E. (2008). Integrated MEG/fMRI model validated using real auditory data. Brain Topogr., 21, 61–74.

    Article  Google Scholar 

  • Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magn. Reson. Med., 25, 390–397.

    Article  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med., 34, 537–541.

    Article  Google Scholar 

  • Blockley, N. P., Francis, S. T., & Gowland, P. A. (2009). Perturbation of the BOLD response by a contrast agent and interpretation through a modified balloon model. NeuroImage, 48, 84–93.

    Article  Google Scholar 

  • Büchel, C., & Friston, K. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex, 7, 768–778.

    Article  Google Scholar 

  • Buxton, R. B., & Frank, L. R. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab., 17, 64–72.

    Article  Google Scholar 

  • Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med., 39, 855–864.

    Article  Google Scholar 

  • Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23, S220–S223.

    Article  Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.

    Article  Google Scholar 

  • Chen, W., Zhu, X. H., Gruetter, R., Seaquist, E. R., Adriany, G., & Ugurbil, K. (2001). Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI. Magn. Reson. Med., 45, 34–55.

    Google Scholar 

  • Chhina, N., Kuestermann, E., Halliday, J., Simpson, L. J., Macdonald, I. A., Bachelard, H. S., & Morris, P. G. (2001). Measurement of human tricarboxylic acid cycle rates during visual activation by 13C magnetic resonance spectroscopy. J. Neurosci. Res., 66, 737–746.

    Article  Google Scholar 

  • Collins, C. M., Smith, M. B., & Turner, R. (2004). Model of local temperature changes in brain upon functional activation. J. Appl. Physiol., 97, 2051–2055.

    Article  Google Scholar 

  • Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Adv. Comput. Math., 5, 329–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, T., Kwong, K., Weisskoff, R., & Rosen, B. (1998). Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. USA, 95, 1834–1839.

    Article  Google Scholar 

  • Dunn, A. K., Devor, A., Dale, A. M., & Boas, D. A. (2005). Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. NeuroImage, 27, 279–290.

    Article  Google Scholar 

  • Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA, 83, 1140–1144.

    Article  Google Scholar 

  • Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462–464.

    Article  Google Scholar 

  • Frahm, J., Bruhn, H., Merboldt, K. D., & Hanicke, W. (1992). Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J. Magn. Reson. Imaging, 2, 501–505.

    Article  Google Scholar 

  • Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage, 12, 466–477.

    Article  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19, 1273–1302.

    Article  Google Scholar 

  • Gorbach, A. M. (1993). Infrared imaging of brain function. Adv. Exp. Med. Biol., 333, 95–123.

    Google Scholar 

  • Gorbach, A. M., Heiss, J., Kufta, C., Sato, S., Fedio, P., Kammerer, W. A., Solomon, J., & Oldfield, E. H. (2003). Intraoperative infrared functional imaging of human brain. Ann. Neurol., 54, 297–309.

    Article  Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev., Neurosci., 2, 685–694.

    Article  Google Scholar 

  • Hayward, J. N., & Baker, M. A. (1968). Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am. J. Physiol., 215, 389–402.

    Google Scholar 

  • Hindman, J. C. (1966). Proton resonance shift of water in the gas and liquid states. J. Chem. Phys., 44, 4582–4592.

    Article  Google Scholar 

  • Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. USA, 96, 9403–9408.

    Article  Google Scholar 

  • Hyder, F., Shulman, R. G., & Rothman, D. L. (1998). A model for the regulation of cerebral oxygen delivery. J. Appl. Physiol., 85, 554–564.

    Google Scholar 

  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA, 89, 5675–5679.

    Article  Google Scholar 

  • Krüger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn. Reson. Med., 46, 631–637.

    Article  Google Scholar 

  • Kuroda, K., Suzuki, Y., Ishihara, Y., & Okamoto, K. (1996). Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn. Reson. Med., 35, 20–29.

    Article  Google Scholar 

  • LaManna, J. C., McCracken, K. A., Patil, M., & Prohaska, O. J. (1989). Stimulus-activated changes in brain tissue temperature in the anesthetized rat. Metab. Brain Dis., 4, 225–237.

    Article  Google Scholar 

  • Le Bihan, D. (Ed.) (1995). Diffusion and perfusion magnetic resonance imaging. New York: Raven Press Ltd.

    Google Scholar 

  • Leithner, C., Roy, G., Offenhauser, N., Füchtemeier, M., Kohl-Bareis, M., Villringer, A., & Lindauer, U. (2010). Pharmacological uncoupling of activation induced increases in CBF and CMRO2. J. Cereb. Blood Flow Metab., 30, 311–322.

    Article  Google Scholar 

  • Lin, A. L., Fox, P. T., Hardies, J., Duong, T. Q., & Gao, J. H. (2010). Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl. Acad. Sci. USA, 107, 8446–8451.

    Article  Google Scholar 

  • Madsen, P. L., Hasselbalch, S. G., Hagemann, L. P., Olsen, K. S., Bulow, J., Holm, S., Wildschiodtz, G., Paulson, O. B., & Lassen, N. A. (1995). Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety–Schmidt technique. J. Cereb. Blood Flow Metab., 15, 485–91.

    Article  Google Scholar 

  • Marrett, S., Fujita, H., Meyer, E., Ribeiro, L., Evans, A., Kuwabara, H., & Gjedde, A. (1993). Stimulus specific increase of oxidative metabolism in human visual cortex (pp. 217–224). Amsterdam: Elsevier.

    Google Scholar 

  • McElligott, J. G., & Melzack, R. (1967). Localized thermal changes evoked in the brain by visual and auditory stimulation. Exp. Neurol., 17, 293–312.

    Article  Google Scholar 

  • Melzack, R., & Casey, K. L. (1967). Localized temperature changes evoked in the brain by somatic stimulation. Exp. Neurol., 17, 276–292.

    Article  Google Scholar 

  • Newberg, A. B., Wang, J., Rao, H., Swanson, R. L., Wintering, N., Karp, J. S., Alavi, A., Greenberg, J. H., & Detre, J. A. (2005). Concurrent CBF and CMRGlc changes during human brain activation by combined fMRI–PET scanning. NeuroImage, 28, 500–506.

    Article  Google Scholar 

  • Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 89, 5951–5955.

    Article  Google Scholar 

  • Parker, D. L., Smith, V., Sheldon, P., Crooks, L., & Fussel, L. (1983). Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys., 10, 321–325.

    Article  Google Scholar 

  • Pennes, H. H. (1948). Analysis of tissue and arterial blood temperature in the resting human forearm. J. Appl. Physiol., 1, 93–122.

    Google Scholar 

  • Reis, D. J., & Golanov, E. V. (1997). Autonomic and vasomotor regulation. Int. Rev. Neurobiol., 41, 121–149.

    Article  Google Scholar 

  • Ribeiro, L., Kuwabara, H., Meyer, E., Fujita, H., Marrett, S., Evans, A., & Gjedde, A. (1993). In K. Uemura, N. Lassen, T. Jones, & I. Kanno (Eds.), Quantification of brain function (pp. 229–236). Amsterdam: Elsevier.

    Google Scholar 

  • Riera, J., Wan, X., Jimenez, J. C., & Kawashima, R. (2006). Nonlinear local electro-vascular coupling. Part I: a theoretical model. Hum. Brain Mapp., 27, 896–914.

    Article  Google Scholar 

  • Riera, J., Jimenez, J. C., Wan, X., Kawashima, R., & Ozaki, T. (2007). Nonlinear local electro-vascular coupling. Part II: from data to neuronal masses. Hum. Brain Mapp., 28, 335–354.

    Article  Google Scholar 

  • Seitz, R. J., & Roland, P. E. (1992). Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neural. Scand., 86, 60–67.

    Article  Google Scholar 

  • Serota, H. M., & Gerard, R. W. (1938). Localized thermal changes in the cats brain. J. Neurophysiol., 1, 115–24.

    Google Scholar 

  • Shevelev, I. A. (1998). Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog. Neurobiol., 56, 269–305.

    Article  Google Scholar 

  • Shevelev, I. A., Tsicalov, E. N., Gorbach, A. M., Budko, K. P., & Sharaev, G. A. (1993). Thermoimaging of the brain. J. Neurosci. Methods, 46, 49–57.

    Article  Google Scholar 

  • Shevelev, I. A., & Tsicalov, E. N. (1997). Fast thermal waves spreading over the cerebral cortex. Neuroscience, 76, 531–540.

    Article  Google Scholar 

  • Shitzer, A., Stroschein, L. A., Gonzalez, R. R., & Pandol, K. B. (1996). Lumped-parameter tissue temperature-blood perfusion model of a cold-stressed fingertip. J. Appl. Physiol., 80, 1829–1834.

    Google Scholar 

  • Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P., Adriany, G., Hu, X., & Ugurbil, K. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36, 1195–1210.

    Article  Google Scholar 

  • Sotero, R. C., & Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. NeuroImage, 35, 149–165.

    Article  Google Scholar 

  • Sukstanskii, A., & Yablonskiy, D. A. (2006). Theoretical model of temperature regulation in the brain during changes in functional activity. PNAS, 103, 12144–12149.

    Article  Google Scholar 

  • Takuya, H., Watabe, H., Kudomi, N., Kim, K. M., Enmi, J. I., Hayashida, K., & Iida, H. (2003). A theoretical model of oxygen delivery and metabolism for physiological interpretation of quantitative cerebral blood flow and metabolic rate of oxygen. J. Cereb. Blood Flow Metab., 23, 1314–1323.

    Google Scholar 

  • Trübel, H. K. F., Sacolick, L. I., & Hyder, F. (2006). Regional temperature changes in the brain during somatosensory stimulation. J. Cereb. Blood Flow Metab., 26, 68–78.

    Article  Google Scholar 

  • Vafaee, M. S., & Gjedde, A. (2000). Model of blood-brain transfer of oxygen explains nonlinear flow- metabolism coupling during stimulation of visual cortex. J. Cereb. Blood Flow Metab., 20, 747–754.

    Article  Google Scholar 

  • Weber, B., Keller, A. L., Reichold, J., & Logothetis, N. (2008). The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb. Cortex, 18, 2318–2330.

    Article  Google Scholar 

  • Yablonskiy, D. A., Ackerman, J. J. H., & Raichle, M. E. (2000). Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. PNAS, 97, 7603–7608.

    Article  Google Scholar 

  • Zheng, Y., Martindale, J., Johnston, D., Jones, M., Berwick, J., & Mayhew, J. (2002). A model of the hemodynamic response and oxygen delivery to brain. NeuroImage, 16, 617–637.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Sotero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotero, R.C., Iturria-Medina, Y. From Blood Oxygenation Level Dependent (BOLD) Signals to Brain Temperature Maps. Bull Math Biol 73, 2731–2747 (2011). https://doi.org/10.1007/s11538-011-9645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9645-5

Keywords

Navigation