Skip to main content
Log in

From Inflammation to Wound Healing: Using a Simple Model to Understand the Functional Versatility of Murine Macrophages

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcón, R., Orellana, M. S., Neira, B., Uribe, E., García, J. R., & Carvajal, N. (2006). Mutational analysis of substrate recognition by human arginase type I—agmatinase activity of the N130D variant. FEBS J., 273, 5625–5631.

    Article  Google Scholar 

  • Albina, J. E., Mills, C. D., Henry, W. L. Jr, & Caldwell, M. D. (1990). Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J. Immunol., 144(10), 3877–3880.

    Google Scholar 

  • Anthony, R. M., Rutitzky, L. I., Urban, J. F. Jr., Stadecker, M. J., & Gause, W. C. (2007). Protective immune mechanisms in helminth infection. Nat. Rev. Immunol., 7, 975–987.

    Article  Google Scholar 

  • Azenabor, A. A., Kennedy, P., & York, J. (2009). Free intracellular Ca2+ regulates bacterial lipopolysaccharide induction of iNOS in human macrophages. Immunobiology, 214, 143–152.

    Article  Google Scholar 

  • Bogdan, C. (1997). Of microbes, macrophages and nitric oxide. Behring-Inst.-Mitt., 99, 58–72.

    Google Scholar 

  • Boucher, J.-L., Custot, J., Vadon, S., Delaforge, M., Lepoivre, M., Tenu, J.-P., Yapo, A., & Mansuy, D. (1994). Nω-hydroxy-L-arginine, an intermediate in the L-arginine to Nitric Oxide pathway, is a strong inhibitor of liver and macrophage Arginase. Biochem. Biophys. Res. Commun., 203, 1614–1621.

    Article  Google Scholar 

  • Boucher, J. L., Moali, C., & Tenu, J. P. (1999). Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell. Mol. Life Sci., 55, 1015–1028.

    Article  Google Scholar 

  • Daghigh, F., Fukuto, J. M., & Ash, D. E. (1994). Inhibition of rat liver Arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem. Biophys. Res. Commun., 202, 174–180.

    Article  Google Scholar 

  • Daley, J. M., Brancato, S. K., Thomay, A. A., Reichner, J. S., & Albina, J. E. (2010). The phenotype of murine wound macrophages. J. Leukoc. Biol., 87(1), 59–67.

    Article  Google Scholar 

  • El Kasmi, K. C., Qualls, J. E., Pesce, J. T., Smith, A. M., Thompson, R. W., Henao-Tamayo, M., Basaraba, R. J., König, T., Schleicher, U., Koo, M. S., Kaplan, G., Fitzgerald, K. A., Tuomanen, E. I., Orme, I. M., Kanneganti, T. D., Bogdan, C., Wynn, T. A., & Murray, P. J. (2008). Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol., 9(12), 1399–1406.

    Article  Google Scholar 

  • El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M., & Bogdan, C. (2003). Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol., 171(9), 4561–4568.

    Google Scholar 

  • Fallon, P. G., & Mangan, N. E. (2007). Suppression of TH2-type allergic reactions by helminth infection. Nat. Rev. Immunol., 7, 220–230.

    Article  Google Scholar 

  • Gause, W. C., Urban, J. F. Jr., & Stadecker, M. J. (2003). The immune response to parasitic helminths: insights from murine models. Trends Immunol., 24, 269–277.

    Article  Google Scholar 

  • Goldsby, R. A., Kindt, T. J., & Osborne, B. A. (2002). Kuby immunology (4th ed.). New York: Freeman.

    Google Scholar 

  • Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol., 3, 23–35.

    Article  Google Scholar 

  • Gordon, S. (2007). The macrophage: past, present and future. Eur. J. Immunol., 37(1), S9–S17.

    Article  Google Scholar 

  • Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5), 593–604.

    Article  Google Scholar 

  • Gotoh, T., & Mori, M. (1999). Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J. Cell Biol., 144, 427–434.

    Article  Google Scholar 

  • Gray, M. J., Poljakovic, M., Kepka-Lenhart, D., & Morris, S. M. Jr. (2005). Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene, 353, 98–106.

    Article  Google Scholar 

  • Hecker, M., Nematollahi, H., Hey, C., Busse, R., & Racké, K. (1995). Inhibition of arginase by NG-hydroxy-L-arginine in alveolar macrophages: implications for the utilization of L-arginine for nitric oxide synthesis. FEBS Lett., 359, 251–254.

    Article  Google Scholar 

  • Herald, M. C. (2010). General model of inflammation. Bull. Math. Biol., 72(4), 765–779.

    Article  MathSciNet  MATH  Google Scholar 

  • Herbert, D. R., Holscher, C., Mohrs, M., Arendse, B., Schwegmann, A., Radwanska, M., Leeto, M., Kirsch, R., Hall, P., Mossmann, H., Claussen, B., Forster, I., & Brombacher, F. (2004). Alternative macrophage activation is essential for survival during schistosomiasis and down modulates T helper 1 responses and immunopathology. Immunity, 20, 623–635.

    Article  Google Scholar 

  • Hesse, M., Cheever, A. W., Jankovic, D., & Wynn, T. A. (2000). NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease. Am. J. Pathol., 157(3), 945–955.

    Article  Google Scholar 

  • Hesse, M., Modolell, M., La Flamme, A. C., Schito, M., Fuentes, J. M., Cheever, A. W., Pearce, E. J., & Wynn, T. A. (2001). Differential regulation of nitric oxide synthase-2 and arginase-1 by type1/type2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol., 167, 6533–6544.

    Google Scholar 

  • Janeway, C. A., Travers, P., Walport, M., & Shlomichik, M. (2001). Immunobiology (Vol. 5). New York: Garland.

    Google Scholar 

  • Khallou-Laschet, J., Varthaman, A., Fornasa, G., Compain, C., Gaston, A.-T., Clement, M., Cussiot, M., Levillain, O., Graff-Dubois, S., Nicoletti, A., & Caligiuri, G. (2010). Macrophage plasticity in experimental atherosclerosis. PLoS ONE, 5(1), e8852.

    Article  Google Scholar 

  • Kolodziejski, P. J., Koo, J.-S., & Eissa, N. T. (2004). Regulation of inducible nitric oxide synthase by rapid cellular turnover and cotranslational down-regulation by dimerization inhibitors. Proc. Natl. Acad. Sci. USA, 101(52), 18141–18146.

    Article  Google Scholar 

  • Krieg, A. M. (2000). Signal transduction induced by immunostimulatory CpG DNA. Springer Semin. Immunopath, 22(1–2), 97–105.

    Article  Google Scholar 

  • Loehning, M., Hegazy, A. N., Pinschewer, D. D., Busse, D., Lang, K. S., Hofer, T., Radbruch, A., Sinkernagel, R. M., & Hengartner, H. (2008). Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med., 205(1), 53–61.

    Article  Google Scholar 

  • MacMicking, J., Xie, Q. W., & Nathan, C. (1997). Nitric oxide and macrophage function. Annu. Rev. Immunol., 15, 323–350.

    Article  Google Scholar 

  • Maggelakis, S. A. (2003). A mathematical model of tissue replacement during epidermal wound healing. Appl. Math. Model., 27(3), 189–196.

    Article  MATH  Google Scholar 

  • Maggelakis, S. A. (2004). Modeling the role of angiogenesis in epidermal wound healing. Discrete Contin. Dyn. Syst., Ser. B, 4(1), 267–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahoney, E., Reichner, J., Bostom, L. R., Mastrofrancesco, B., Henry, W., & Albina, J. (2002). Bacterial colonization and the expression of inducible nitric oxide synthase in murine wounds. Am. J. Pathol., 161(6), 2143–2152.

    Article  Google Scholar 

  • Mansuy, D., & Boucher, J.-L. (2004). Alternative nitric oxide-producing substrates for NO synthases. J. Free Radic. Biol. Med., 37(8), 1105–1121.

    Article  Google Scholar 

  • Marée, A. F., Komba, M., Dyck, C., Labecki, M., Finegood, D. T., & Edelstein-Keshet, L. (2005). Quantifying macrophage defects in type 1 diabetes. J. Theor. Biol., 233(4), 533–551.

    Article  Google Scholar 

  • Marino, S., Myers, A., Flynn, J. L., & Kirschner, D. E. (2010). TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: a next-generation two-compartmental model. J. Theor. Biol., 265(4), 586–598.

    Article  Google Scholar 

  • Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Front. Biosci., 13, 453–461.

    Article  Google Scholar 

  • Moali, C., Boucher, J.-L., Sari, M.-A., Stuehr, D. J., & Mansuy, D. (1998). Substrate specificity of NO synthases: detailed comparison of L-arginine, Homo-L-arginine, their Nω-hydroxy derivatives, and Nω-hydroxynor-L-arginine. Biochemistry, 37, 10453–10460.

    Article  Google Scholar 

  • Moali, C., Brollo, M., Custot, J., Sari, M., Boucher, J.-L., Stuehr, D. J., & Mansuy, D. (2000). Recognition of α-amino acids bearing various C=NOH functions by nitric oxide synthase involves very different structural determinants. Biochemistry, 39, 8208–8218.

    Article  Google Scholar 

  • Modolell, M., Corraliza, I. M., Link, F., Soler, G., & Eichmann, K. (1995). Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol., 25(4), 1101–1104.

    Article  Google Scholar 

  • Morris, S. M. Jr., Kepka-Lenhart, D., & Chen, L. C. (1998). Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am. J. Physiol., 275(5 Pt 1), E740–E747.

    Google Scholar 

  • Mosser, D. M. (2003). The many faces of macrophage activation. J. Leukoc. Biol., 73, 209–212.

    Article  Google Scholar 

  • Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 8(12), 958–969.

    Article  Google Scholar 

  • Munder, M., Eichmann, K., & Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol., 160, 95347.

    Google Scholar 

  • Nathan, C. (1994). Nitric oxide and biopterin: a study in Chairoscuro. J. Clin. Invest., 93(5), 2236–2243.

    Article  Google Scholar 

  • Ourgrinovskaia, A., Thompson, R. S., & Myerscough, M. R. (2010). An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull. Math. Biol., 72(6), 1534–1561.

    Article  MathSciNet  Google Scholar 

  • Pauleau, A.-L., Rutschman, R., Lang, R., Pernis, A., Watowich, S. S., & Murray, P. J. (2004). Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol., 172, 7565–7573.

    Google Scholar 

  • Pearce, E. J., & MacDonald, A. S. (2002). The immunobiology of schistosomiasis. Nat. Rev. Immunol., 2(7), 499–511.

    Article  Google Scholar 

  • Pesce, J., Kaviratne, M., Ramalingam, T. R., Thompson, R. W., Urban, J. F. Jr., Cheever, A. W., Young, D. A., Collins, M., Grusby, M. J., & Wynn, T. A. (2006). The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Invest., 116(7), 2044–2055.

    Article  Google Scholar 

  • Pettet, G. J., Byrne, H. M., Mcelwain, D. L. S., & Norbury, J. (1996). A model of wound-healing angiogenesis in soft tissue. Math. Biosci., 136(1), 35–63.

    Article  MATH  Google Scholar 

  • Porcheray, F., Viaud, S., Rimaniol, A. C., Leone, C., Samah, B., Dereuddre-Bosquet, N., Dormont, D., & Gras, G. (2005). Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol., 142, 481–489.

    Google Scholar 

  • Reyes, J. L., & Terrazas, L. I. (2007). The divergent roles of alternatively activated macrophages in helminthic infections. Parasite Immunol., 29, 609–619.

    Article  Google Scholar 

  • Rutschman, R., Lang, R., Hesse, M., Ihle, J. N., Wynn, T. A., & Murray, P. J. (2001). Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol., 166(4), 2173–2177.

    Google Scholar 

  • Santhanam, L., Christianson, D. W., Nyham, D., & Berkowitz, D. E. (2008). Arginase and vascular aging. J. Appl. Physiol., 105, 1632–1642.

    Article  Google Scholar 

  • Schreiber, R. D. (1984). Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity. Contemp. Top. Immunobiol, 13, 171–198.

    Google Scholar 

  • Shin, D.-G., Kazmi, S. A., Pei, B., Kim, Y.-A., Maddox, J., Nori, R., Wong, A., Krueger, W., & Rowe, D. (2009). Computing consistency between microarray data and known gene regulation relationships. IEEE Trans. Inf. Technol. Biomed., 13(6), 1075–1082.

    Article  Google Scholar 

  • Stadecker, M. J., Asahi, H., Finger, E., Hernandez, H. J., Rutitzky, L. I., & Sun, J. (2004). The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol. Rev., 201, 168–179.

    Article  Google Scholar 

  • Stein, M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med., 176(1), 287–292.

    Article  Google Scholar 

  • Stout, R. D., & Suttles, J. (2004). Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol., 76, 509–513.

    Article  Google Scholar 

  • Stuehr, D. J. (1999). Mammalian nitric oxide synthases. Biochim. Biophys. Acta, 1411, 217–230.

    Article  Google Scholar 

  • Waugh, H. V., & Sherratt, J. A. (2006). Macrophage dynamics in diabetic wound healing. Bull. Math. Biol., 68(1), 197–207.

    Article  MathSciNet  Google Scholar 

  • Wei, L. H., Jacobs, A. T., Morris, S. M. Jr., & Ignarro, L. J. (2000). IL-4 and IL-13 up-regulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Am. J. Physiol., Cell Physiol., 279, 248–256.

    Google Scholar 

  • Wendelsdorf, K., Bassaganya-Riera, J., Hontecillas, R., & Eubank, S. (2010). Model of colonic inflammation: immune modulatory mechanisms in inflammatory bowel disease. J. Theor. Biol., 264(4), 1225–1239.

    Article  Google Scholar 

  • Wu, G., & Morris, S. M. Jr. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J., 336, 1–17.

    Google Scholar 

  • Xaus, J., Comalada, M., Valledor, A. F., Lloberas, J., López-Soriano, F., Argilés, J. M., Bogdan, C., & Celada, A. (2000). LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood, 95(12), 3823–3831.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren M. Childs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childs, L.M., Paskow, M., Morris, S.M. et al. From Inflammation to Wound Healing: Using a Simple Model to Understand the Functional Versatility of Murine Macrophages. Bull Math Biol 73, 2575–2604 (2011). https://doi.org/10.1007/s11538-011-9637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9637-5

Keywords

Navigation