Skip to main content
Log in

The Effect of Loss of Immunity on Noise-Induced Sustained Oscillations in Epidemics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The effect of loss of immunity on sustained population oscillations about an endemic equilibrium is studied via a multiple scales analysis of a SIRS model. The analysis captures the key elements supporting the nearly regular oscillations of the infected and susceptible populations, namely, the interaction of the deterministic and stochastic dynamics together with the separation of time scales of the damping and the period of these oscillations. The derivation of a nonlinear stochastic amplitude equation describing the envelope of the oscillations yields two criteria providing explicit parameter ranges where they can be observed. These conditions are similar to those found for other applications in the context of coherence resonance, in which noise drives nearly regular oscillations in a system that is quiescent without noise. In this context the criteria indicate how loss of immunity and other factors can lead to a significant increase in the parameter range for prevalence of the sustained oscillations, without any external driving forces. Comparison of the power spectral densities of the full model and the approximation confirms that the multiple scales analysis captures nonlinear features of the oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. J., Allen, L. J. S., Arciniega, A., & Greewood, P. E. (2008). Construction of equivalent stochastic differential equation models. Stoch. Anal. Appl., 26, 274–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Alonso, D., McKane, A. J., & Pascual, M. (2007). Stochastic amplification in epidemics. J. R. Soc. Interface, 4, 575–582.

    Article  Google Scholar 

  • Aparicio, J. P., & Solari, H. G. (2001). Sustained oscillations in stochastic systems. Math. Biosci., 169, 15–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Bailey, N. T. (1975). The mathematical theory of infectious diseases and its applications (2nd ed.). London: Griffin.

    MATH  Google Scholar 

  • Baxendale, P. H. (2004). Stochastic averaging and asymptotic behavior of the stochastic Duffing–van der Pol equation. Stoch. Process. Appl., 113, 235–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I., & Rinaldo, A. (2008). On the space-time evolution of a cholera epidemic. Water Resour. Res., 44, W01424.

    Article  Google Scholar 

  • Brauer, F., van den Driessche, P., & Wang, L. (2008). Oscillations in a patchy environment disease model. Math. Biosci., 215, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Buckwar, E., Kuske, R., L’Esperance, B., & Soo, T. (2006). Noise-sensitivity in machine tool vibrations. Int. J. Bifurc. Chaos, 16, 2407–2416.

    Article  MATH  Google Scholar 

  • Codeco, C. T., & Coelho, F. (2006). Trends in cholera epidemiology. PLoS Med., 3, 42.

    Article  Google Scholar 

  • Dushoff, J., Plotkin, J. B., SA, S. A. Levin, & Earn, D. (2004). Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. USA, 101, 16915–16916.

    Article  Google Scholar 

  • Gardiner, C. W. (1983). Handbook of stochastic methods for physics, chemistry, and the natural sciences. Berlin: Springer.

    MATH  Google Scholar 

  • Hagenaars, T. J., Donnelly, C. A., & Ferguson, N. M. (2004). J. Theor. Biol., 229, 349–359.

    Article  MathSciNet  Google Scholar 

  • He, D. H., & Earn, D. J. D. (2007). Epidemiological effects of seasonal oscillations in birth rates. Theor. Popul. Biol., 72, 274–291.

    Article  MATH  Google Scholar 

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, G., Ditzinger, T., Ning, C. Z., & Haken, H. (1993). Phys. Rev. Lett., 71, 807–810.

    Article  Google Scholar 

  • Kevorkian, J., & Cole, J. D. (1996). Applied mathematical sciences: Vol. 114. Multiple scale and singular perturbation methods. New York: Springer.

    Book  MATH  Google Scholar 

  • Klosek, M. M., & Kuske, R. (2005). Multiscale analysis of stochastic delay differential equations. Multiscale Model. Simul., 3, 706–729.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuske, R., Greenwood, P., & Gordillo, L. F. (2007). Sustained oscillations via coherence resonance in SIR. J. Theor. Biol., 245, 459–469.

    Article  MathSciNet  Google Scholar 

  • Lindner, B., Garcia-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Phys. Rep., 392, 321–424.

    Article  Google Scholar 

  • Liu, Q.-X., & Jin, Z. (2007). Formation of spatial patterns in an epidemic model with constant removal rate of the infectives. J. Stat. Mech. Theory Exp., P05002.

  • Liu, Q.-X., Wang, R.-H., & Jin, Z. (2009). Persistence, extinction, and spatio-temporal synchronization of SIRS spatial models. J. Stat. Mech. Theory Exp., P07007.

  • McKane, A. J., & Newman, T. J. (2005). Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett., 94, 218102.

    Article  Google Scholar 

  • Nasell, I. (2002). Stochastic models of some endemic infections. Math. Biosci., 179, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, H. T. H., & Rohani, P. (2008). Noise, nonlinearity, and seasonality: the epidemics of whooping cough revisited. J. R. Soc. Interface, 5, 403–413.

    Article  Google Scholar 

  • Oksendal, B. (1985). Stochastic differential equations. Berlin: Springer.

    Google Scholar 

  • Pikovsky, A. S., & Kurths, J. (1997). Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78, 775–778.

    Article  MathSciNet  MATH  Google Scholar 

  • Simoes, M., Telo da Gama, M. M., & Nunes, A. (2008). Stochastic fluctuations in epidemics on networks. J. R. Soc. Interface, 5, 555–566.

    Article  Google Scholar 

  • Suel, G. M., Garcia-Ojalvo, J., & Liberman, L. M. (2006). An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440, 545–550.

    Article  Google Scholar 

  • Turner, T. E., Schnell, S., & Burrage, K. (2004). Stochastic approaches for modelling in vivo reactions. Comput. Biol. Chem., 28, 165–178.

    Article  MATH  Google Scholar 

  • Yu, N., Kuske, R., & Li, Y.-X. (2008). Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators. Chaos, 18, 015112.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kuske.

Additional information

J. Chaffee previously Department of Mathematics, University of British Columbia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaffee, J., Kuske, R. The Effect of Loss of Immunity on Noise-Induced Sustained Oscillations in Epidemics. Bull Math Biol 73, 2552–2574 (2011). https://doi.org/10.1007/s11538-011-9635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9635-7

Keywords

Navigation