Skip to main content

Advertisement

Log in

Free Terminal Time Optimal Control Problem of an HIV Model Based on a Conjugate Gradient Method

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The minimum duration of treatment periods and the optimal multidrug therapy for human immunodeficiency virus (HIV) type 1 infection are considered. We formulate an optimal tracking problem, attempting to drive the states of the model to a “healthy” steady state in which the viral load is low and the immune response is strong. We study an optimal time frame as well as HIV therapeutic strategies by analyzing the free terminal time optimal tracking control problem. The minimum duration of treatment periods and the optimal multidrug therapy are found by solving the corresponding optimality systems with the additional transversality condition for the terminal time. We demonstrate by numerical simulations that the optimal dynamic multidrug therapy can lead to the long-term control of HIV by the strong immune response after discontinuation of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, B. M., Banks, H. T., Kwon, H. D., & Tran, H. T. (2004). Dynamic multidrug therapies for HIV: Optimal and STI control approaches. Math. Biosci. Eng., 1, 223–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, B. M., Banks, H. T., Davidian, M., Kwon, H. D., Tran, H. T., Wynne, S. N., & Rosenberg, E. S. (2005). HIV dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math., 184, 10–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, B. M., Banks, H. T., Davidian, M., & Rosenberg, E. S. (2007). Estimation and prediction with HIV treatment interruption data. Bull. Math. Biol., 69, 563–584.

    Article  MATH  Google Scholar 

  • Alvarez-Ramirez, J., Meraz, M., & Velasco-Hernandez, J. X. (2000). Feedback control of the chemotherapy of HIV. Int. J. Bifurc. Chaos Appl. Sci. Eng., 10, 2207–2219.

    MATH  Google Scholar 

  • Bajaria, S. H., Webb, G., & Kirschner, D. E. (2004). Predicting differential responses to structured treatment interruptions during HAART. Bull. Math. Biol., 66, 1093–1118.

    Article  Google Scholar 

  • Banks, H. T., Kwon, H.-D., Toivanen, J. A., & Tran, H. T. (2006). A state-dependent Riccati equation-based estimator approach for HIV feedback control. Optim. Control Appl. Methods, 27, 93–121.

    Article  MathSciNet  Google Scholar 

  • Banks, H. T., Davidian, M., Hu, S., Kepler, G. M., & Rosenberg, E. S. (2008). Modeling HIV immune response and validation with clinical data. J. Biol. Dyn., 2, 357–385.

    Article  MathSciNet  Google Scholar 

  • Bonhoeffer, S., Rembiszewski, M., Ortiz, G. M., & Nixon, D. F. (2000). Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS, 14, 2313–2322.

    Article  Google Scholar 

  • Brandt, M. E., & Chen, G. (2001). Feedback control of a biodynamical model of HIV-1. IEEE Trans. Biomed. Eng., 48, 754–759.

    Article  Google Scholar 

  • Callaway, D. S., & Perelson, A. S. (2001). HIV-1 infection and low steady state viral loads. Bull. Math. Biol., 64, 29–64.

    Article  Google Scholar 

  • Dai, Y. H., Liao, L. Z., & Li, D. (2004). On restart procedures for the conjugate gradient method. Numer. Algorithms, 35, 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Fister, K. R., Lenhart, S., & McNally, J. S. (1998). Optimizing chemotherapy in an HIV model. Electron. J. Differ. Equ., 32, 1–12.

    MathSciNet  Google Scholar 

  • Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. New York: Springer.

    MATH  Google Scholar 

  • Gilbert, J. C., & Nocedal, J. (1992). Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim., 2(1), 21–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Kamien, M. I., & Schwartz, N. L. (1991). Dynamic optimization. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Kirschner, D., Lenhart, S., & Serbin, S. (1997). Optimal control of the chemotherapy of HIV. J. Math. Biol., 35, 775–792.

    Article  MathSciNet  MATH  Google Scholar 

  • Lasdon, L. S., Mitter, S. K., & Waren, A. D. (1967). The conjugate gradient method for optimal control problems. IEEE Trans. Autom. Control, AC-12(2), 132–138.

    Article  MathSciNet  Google Scholar 

  • Lisziewicz, J., & Lori, F. (2002). Structured treatment interruptions in HIV/AIDS therapy. Microbes Infect., 4, 207–214.

    Article  Google Scholar 

  • Lukes, D. L. (1982). Differential equations: classical to controlled, mathematics in science and engineering. San Diego: Academic Press.

    Google Scholar 

  • Ogg, G. S., et al. (1998). Quantitation of HIV-1 specific cytotoxic T lymphocytes and plasma load of viral RNA. Science, 279, 2103–2106.

    Article  Google Scholar 

  • Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. New York: Gordon and Breach.

    MATH  Google Scholar 

  • Ruiz, L., et al. (2000). Structured treatment interruption in chronically HIV-1 infected patients after long-term viral suppression. AIDS, 14, 397–403.

    Article  Google Scholar 

  • Shi, Z. J., & Guo, J. (2008). A new algorithm of nonlinear conjugate gradient method with strong convergence. Comput. Math. Appl., 27, 93–106.

    MathSciNet  MATH  Google Scholar 

  • Shim, H., Han, S. J., Chung, C. C., Nam, S., & Seo, J. H. (2003). Optimal scheduling of drug treatment for HIV infection: Continuous dose control and receding horizon control. Int. J. Control. Autom. Syst., 1, 401–407.

    Google Scholar 

  • Wodarz, D., & Nowak, M. A. (1999). Specific therapy regimes could lead to long-term immunological control of HIV. Proc. Natl. Acad. Sci. USA, 96, 14464–14469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Dae Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, T., Kwon, HD. & Lee, J. Free Terminal Time Optimal Control Problem of an HIV Model Based on a Conjugate Gradient Method. Bull Math Biol 73, 2408–2429 (2011). https://doi.org/10.1007/s11538-011-9630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9630-z

Keywords

Navigation