Skip to main content

Advertisement

Log in

The R5 to X4 Coreceptor Switch: A Dead-End Path, or a Strategic Maneuver?

Lessons from a Game Theoretic Analysis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we show how a game theoretic analysis can provide a model to explain the interdependence of host produced APOBEC3G levels and virus encoded Vif levels. We then use the relationship between these two opposing proteins in order to predict the success of two different HIV-1 viral variants, R5 and X4. From our analysis, we show that when APOBEC3G strongly favors mutation from an R5 strain to an X4 strain, it can be optimal for HIV-1 to suppress transmission of the X4 variant, despite the loss of X4 fitness potential. This is particularly true when the X4 strain significantly interferes with the host adaptive immune response, when Vif production is limited, or when host APOBEC3G targets the X4 strain more severely than the R5 strain. Using the proposed game theoretic analysis, we show that transmitting only R5 viruses has two advantages so far as HIV-1 is concerned. First, it allows for an increased R5 viral load due to immune interference caused by the X4 strain, and second, it forces the host to down-regulate APOBEC3G production, which is automatically favorable to the virus. APOBEC3G down-regulation, which is predicted in our model for a wide range of parameter values, may offer an explanation for the observed low level of APOBEC3G transcription and translation in hosts infected with HIV-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkhout, B., & de Ronde, A. (2004). APOBEC3G versus reverse transcriptase in the generation of HIV-1 drug-resistance mutation. AIDS, 18, 1861–1863.

    Article  Google Scholar 

  • Berkowitz, R. D., Alexander, S., Bare, C., Lindquist-Stepps, V., Bogan, M., Moreno, M. E., Gibson, L., Wieder, E., Kosek, J., Stoddart, C. A., & McCune, J. M. (1998). CCR5- and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J. Virol., 72, 10108–10117.

    Google Scholar 

  • Biebricher, C. K., & Eigen, M. (2005). The error threshold. Virus Res., 107, 117–127.

    Article  Google Scholar 

  • Bjorndal, A., Deng, H., Jansson, M., Fiore, J., Colognesi, C., Karlsson, A., Albert, J., Scarlatti, G., Littman, D., & Fenyö, E. (1997). Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J. Virol., 71, 7478–7487.

    Google Scholar 

  • Bozzette, S., McCutchan, J., Spector, S., Wright, B., & Richman, D. (1993). A cross-sectional comparison of persons with syncytium- and non-syncytium-inducing human immunodeficiency virus. J. Infect. Dis., 168, 1374–1379.

    Article  Google Scholar 

  • Bremermann, H. J., & Pickering, J. (1983). A game-theoretical model of parasite virulence. J. Theor. Biol., 100, 411–426.

    Article  MathSciNet  Google Scholar 

  • Callaway, D. S., Ribeiro, R. M., & Nowak, M. A. (1999). Virus phenotype switching and disease progression in HIV-1 infection. Proc. R. Soc. Lond. B Biol. Sci., 266, 2523–2530.

    Article  Google Scholar 

  • Chao, L., Davenport, M. P., Forrest, S., & Perelson, A. S. (2004). A stochastic model of cytotoxic T-cell responses. J. Theor. Biol., 228, 227–240.

    Article  MathSciNet  Google Scholar 

  • Cho, S.-J., Drechsler, H., Burke, R., Arens, M., Powderly, W., & Davidson, N. (2006). APOBEC3F and APOBEC3G mRNA levels do not correlate with human immunodeficiency virus type 1 plasma viremia or CD4+ T-cell count. J. Virol., 80, 2069–2072.

    Article  Google Scholar 

  • Connor, R., Mohri, H., Cao, Y., & Ho, D. (1993). Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J. Virol., 67, 1772–1777.

    Google Scholar 

  • Connor, R., Sheridan, K., Ceradini, D., Choe, S., & Landau, N. (1997). Change in coreceptor use correlates with disease progression in HIV-1 infected individuals. J. Exp. Med., 185, 621–628.

    Article  Google Scholar 

  • Coombs, D., Gilchrist, M., & Ball, C. (2007). Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens. Theor. Popul. Biol., 72, 576–591.

    Article  Google Scholar 

  • Doms, R. W., & Trono, D. (2000). The plasma membrane as a combat zone in the HIV battlefield. Genes Dev., 14, 2677–2688.

    Article  Google Scholar 

  • Fouchier, R., Mayaard, M., Brouwer, M., Hovenkamp, E., & Schuitemaker, H. (1996). Broader tropism and higher cytopathicity for CD4+ T-cells of a syncytium-inducing compared to a non-syncytium-inducing HIV-1 isolate as a mechanism for accelerated CD4+ T-cell decline in vivo. Virology, 219, 87–96.

    Article  Google Scholar 

  • Gilchrist, M., & Coombs, D. (2006). Evolution of virulence: interdependence, constraints, and selection using nested models. Theor. Popul. Biol., 69, 145–153.

    Article  MATH  Google Scholar 

  • Groenink, M., Fouchier, R., de Goede, R., de Wolf, F., Gruters, R., Cuypers, H., Huisman, H., & Tersmette, M. (1991). Phenotypical heterogeneity in a panel of infectious molecular human immunodeficiency virus type 1 clones derived from a single individual. J. Virol., 65, 1968–1975.

    Google Scholar 

  • Ho, D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126.

    Article  Google Scholar 

  • Ho, S., Silvana, T., Shek, L., Li, A., Gettie, A., Blanchard, J., Boden, D., & Cheng-Mayer, C. (2007). Coreceptor switch in R5-tropic simian/human immunodeficiency virus-infected macaques. J. Virol., 81, 8621–8633.

    Article  Google Scholar 

  • Komohara, Y., Yano, H., Schichijo, S., Shimotohno, K., Itoh, K., & Yamada, A. (2006). High expression of APOBEC3G in patients infected with hepatitis C virus. J. Mol. Histol., 37, 327–332.

    Article  Google Scholar 

  • Koot, M., Keet, I., Vos, A., de Goede, R., Roos, M., Coutinho, R., Miedema, F., Schellekens, P., & Tersmette, M. (1993). Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression of AIDS. Ann. Intern. Med., 118, 681–688.

    Google Scholar 

  • LeGuern, M., Shioda, T., Levy, J., & Cheng-Mayer, C. (1993). Single amino acid change in Tat determines the different rates of replication of two sequential HIV-1 isolates. Virology, 195, 441–447.

    Article  Google Scholar 

  • Long, E., Rainwater, S., Lavreys, L., Mandaliya, K., & Overbaugh, J. (2002). HIV type 1 variants transmitted to women in Kenya require the CCR5 coreceptor for entry, regardless of the genetic complexity of the infecting virus. AIDS Res. Hum. Retrovir., 18, 567–576.

    Article  Google Scholar 

  • Nowak, M., & May, R. (2000). Virus dynamics: mathematical principles of immunology and virology. London: Oxford University Press.

    MATH  Google Scholar 

  • Panos, G., & Nelson, M. (2007). HIV-1 tropism. Biomark. Med., 1, 473–481.

    Article  Google Scholar 

  • Pastore, C., Ramos, A., & Mosier, D. (2004). Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching. J. Virol., 78, 7565–7574.

    Article  Google Scholar 

  • Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. D., & Ho, D. (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271, 1582–1586.

    Article  Google Scholar 

  • Pillai, S., Wong, J., & Barbour, J. (2008). Turning up the volume on mutational pressure: is more of a good thing always better? Retrovirology, 5, 26.

    Article  Google Scholar 

  • Pope, M., & Haase, A. (2003). Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat. Med., 9, 847–852.

    Article  Google Scholar 

  • Ribeiro, M. R., Hazenberg, D. M., Perelson, A. S., & Davenport, P. M. (2006). Naive and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. J. Virol., 80, 802–809.

    Article  Google Scholar 

  • Richman, D. D., & Bozzette, S. A. (1994). The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J. Infect. Dis., 169, 968–974.

    Article  Google Scholar 

  • Schmidtmayerova, H., Alfano, M., Nuovo, G., & Bukrinsky, M. (1998). Human immunodeficiency virus type 1 T-lymphotropic strains enter macrophages via a CD4- and CXCR4-mediated pathway: replication is restricted at a postentry level. J. Virol., 72, 4633–4642.

    Google Scholar 

  • Schuitemaker, H., Koot, M., Kootstra, N., Dercksen, M., Goede, R., Steenwijk, R., Lange, J., Schattenkerk, J., Miedema, F., & Tersmette, M. (1992). Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell tropic virus population. J. Virol., 66, 1354–1360.

    Google Scholar 

  • Shields, P., & Adams, D. (2002). Chemokines and chemokine receptor interactions and functions in chemokine receptors and AIDS. New York: Dekker.

    Google Scholar 

  • Simon, V., Zennou, V., Murray, D., Huang, Y., Ho, D., & Bieniasz, P. (2005). Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog., 1, e6.

    Article  Google Scholar 

  • Skrabal, K., Low, A., Dong, W., Sing, T., Cheung, P., Mammano, F., & Harrigan, R. (2007). Determining human immunodeficiency virus coreceptor use in a clinical setting: degree of correlation between two phenotypic assays and a bioinformatic model. J. Clin. Microbiol., 45, 279–284.

    Article  Google Scholar 

  • Smith, J. M. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Van Rij, R., Blaak, H., Visser, J., Brouwer, M., Rientsma, R., Broersen, S., de Roda Husman, A., & Shuitemaker, H. (2000). Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV1. J. Clin. Invest., 106, 1039–1052.

    Article  Google Scholar 

  • Van’t Wout, A., Blaak, H., Ran, L., Brouwer, M., Kuiken, C., & Schuitemaker, H. (1998). Evolution of syncytium-inducing and non-syncytium inducing biological virus clones in relation to replication kinetics during the course of human immunodeficiency virus type 1 infection. J. Virol., 72, 5099–5107.

    Google Scholar 

  • Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E., & Andino, R. (2006). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439, 344–348.

    Article  Google Scholar 

  • Wiegel, F. W., & Perelson, A. S. (2004). Some scaling principles for the immune system. Immunol. Cell Biol., 82, 127–131.

    Article  Google Scholar 

  • Wodarz, D. (2001). Cytoxic T-lymphocyte memory, virus clearance and antigenic heterogeneity. Proc. R. Soc. Lond. B, 268, 429–436.

    Article  Google Scholar 

  • Wodarz, D. (2006). Killer cell dynamics: mathematical and computational approaches to immunology. Berlin: Springer.

    Google Scholar 

  • Wodarz, D., & Krakauer, D. C. (2000). Defining CTL induced pathology: implications for HIV. Virology, 274, 94–104.

    Article  Google Scholar 

  • Wodarz, D., & Nowak, M. (1998). The effect of different immune responses on the evolution of virulent CXCR4 trophic HIV. Proc. R. Soc. Lond. B Biol. Sci., 265, 2149–2158.

    Article  Google Scholar 

  • Wodarz, D., Lloyd, A. L., Jansen, V. A. A., & Nowak, M. A. (1999). Dynamics of macrophage and T-cell infection by HIV. J. Theor. Biol., 196, 101–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Zhang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

PDF 153 kB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bewick, S., Wu, J., Lenaghan, S.C. et al. The R5 to X4 Coreceptor Switch: A Dead-End Path, or a Strategic Maneuver?. Bull Math Biol 73, 2339–2356 (2011). https://doi.org/10.1007/s11538-010-9625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9625-1

Keywords

Navigation