Skip to main content
Log in

An Exclusion Principle and the Importance of Mobility for a Class of Biofilm Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Much of the earth’s microbial biomass resides in sessile, spatially structured communities such as biofilms and microbial mats, systems consisting of large numbers of single-celled organisms living within self-secreted matrices made of polymers and other molecules. As a result of their spatial structure, these communities differ in important ways from well-mixed (and well-studied) microbial systems such as those present in chemostats. Here we consider a widely used class of 1D biofilm models in the context of a description of their basic ecology. It will be shown via an exclusion principle resulting from competition for space that these models lead to restrictions on ecological structure. Mathematically, this result follows from a classification of steady-state solutions based on a 0-stability condition: 0-stable solutions are in some sense determined by competitive balance at the biofilm base, whereas solutions that are not 0-stable, while less dependent on conditions at the biofilm base, are unstable at the base. As a result of the exclusion principle, it is argued that some form of downward mobility, against the favorable substrate gradient direction, is needed at least in models and possibly in actuality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpkvist, E., & Klapper, I. (2007). A multidimensional multispecies continuum model for heterogenous biofilm. Bull. Math. Biol., 69, 765–789.

    Article  Google Scholar 

  • Atkinson, B., & Davies, I. J. (1974). The overall rate of substrate uptake (reaction) by microbial films. Trans. Inst. Chem. Eng., 52, 248–259.

    Google Scholar 

  • Boles, B. R., Thoendel, M., & Singh, P. K. (2004). Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl. Acad. Sci. USA, 101, 16630–16635.

    Article  Google Scholar 

  • Brown, S., Dockery, J., & Pernarowski, M. (2005). Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species. Math. Biosci., 194, 21–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Costerton, J. W. (2007). The biofilm primer. Berlin: Springer.

    Book  Google Scholar 

  • Doemel, W. N., & Brock, T. D. (1977). Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl. Environ. Microbiol., 34, 433–452.

    Google Scholar 

  • Drury, W. J., Stewart, P. S., & Chiracklis, W. G. (1993). Transport of 1-μm latex beads in Pseudomonas aeruginosa biofilms. Biotechnol. Bioeng., 42, 111–117.

    Article  Google Scholar 

  • Eberl, H. J., Parker, D., & van Loosdrecht, M. (2001). A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med., 3, 161–176.

    Article  MATH  Google Scholar 

  • Gause, G. F. (1934). The struggle for existence. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Kissel, J. C., McCarty, P. L., & Street, R. L. (1984). Numerical simulation of mixed-culture biofilm. J. Environ. Eng., 110, 393–411.

    Google Scholar 

  • Klapper, I., & Dockery, J. (2010). Mathematical description of microbial biofilms. SIAM Rev., 52, 221–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Klausen, M., Aæs-Jorgensen, A., Mølin, S., & Tolker-Nielsen, T. (2003). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol., 50, 61–68.

    Article  Google Scholar 

  • Klayman, B. J., Klapper, I., Stewart, P. S., & Camper, A. K. (2008). Measurements of accumulation and displacement at the single cell cluster level in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol., 10, 2344–2354.

    Google Scholar 

  • Overgaard, N. C. (2010). The Wanner–Gujer–Kissel biofilm model with zero-order kinetics. Preprint.

  • Pritchett, L. A., & Dockery, J. D. (2001). Steady state solutions of a one-dimensional biofilm model. Math. Comput. Model., 33, 255–263.

    Article  MATH  Google Scholar 

  • Prosser, J. I., Bohannan, B. J. M., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, R. P., Green, J. L., Green, L. E., Killham, K., Lennon, J. J., Osborn, A. M., Solan, M., van der Gast, C. J., Peter, J., & Young, W. (2007). The role of ecological theory in microbial ecology. Nat. Rev., Microbiol., 5, 384–392.

    Article  Google Scholar 

  • Purevdorj-Gage, B., Costerton, J. W., & Stoodley, P. (2005). Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology, 151, 1569–1576.

    Article  Google Scholar 

  • Rainey, P. B., & Travisano, M. (1998). Adaptive radiation in a heterogeneous environment. Nature, 394, 69–72.

    Article  Google Scholar 

  • Ramsing, N. B., Ferris, M. J., & Ward, D. M. (2000). Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl. Environ. Microbiol., 66, 1038–1049.

    Article  Google Scholar 

  • Reichert, P. (1994). AQUASIM—a tool for simulation and data analysis of aquatic systems. Water Sci. Technol., 30, 21–30.

    Google Scholar 

  • Reichert, P., Ruchti, J., & Wanner, O. (1989). BIOSIM interactive program for the simulation of the dynamics of mixed culture biofilm systems on a personal computer. Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG), CH8600 Dubendorf, Switzerland.

  • Rogers, S. S., van der Walle, C., & Waigh, T. A. (2008). Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir, 24, 13549–13555.

    Article  Google Scholar 

  • Smith, H. L., & Waltman, P. (1995). The theory of the chemostat: dynamics of microbial competition. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Stewart, P. S. (1993). A model of biofilm detachment. Biotechnol. Bioeng., 41, 111–117.

    Article  Google Scholar 

  • Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annu. Rev. Microbiol., 56, 187–209.

    Article  Google Scholar 

  • Szomolay, B. (2008). Analysis of a moving boundary value problem arising in biofilm modelling. Math. Methods Appl. Sci., 31, 1835–1859.

    Article  MathSciNet  MATH  Google Scholar 

  • Waltman, P. E. (1983). Competition models in population biology. Philadelphia: SIAM.

    Google Scholar 

  • Wanner, O., & Gujer, W. (1984). Competition in biofilms. Water Sci. Technol., 17, 27–44.

    Google Scholar 

  • Wanner, O., & Gujer, W. (1986). A multispecies biofilm model. Biotechnol. Bioeng., 28, 314–328.

    Article  Google Scholar 

  • Wanner, O., & Riechert, P. (1996). Mathematical modeling of mixed-culture biofilm. Biotechnol. Bioeng., 49, 172–184.

    Article  Google Scholar 

  • Wanner, O., Eberl, H., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B., & van Loosdrecht, M. (2006). Mathematical modeling of biofilms. IWA Task Group on Biofilm Modeling, Scientific and Technical Report No. 18. London: IWA Publishing.

  • Ward, D. M., Ferris, M. J., Nold, S. C., & Bates, M. M. (1998). A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev., 62, 1353–1370.

    Google Scholar 

  • Wik, T., & Breitholtz, C. (1996). Steady-state solution of a two-species biofilm problem. Biotechnol. Bioeng., 50, 675–686.

    Article  Google Scholar 

  • Williamson, K., & McCarty, P. L. (1976). Verification studies of the biofilm model for bacterial substrate utilization. J.- Water Pollut. Control Fed., 48, 281–296.

    Google Scholar 

  • Wilson, S., Hamilton, M. A., Hamilton, G. C., Schumann, M. R., & Stoodley, P. (2004). Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PA01) and cell signalling mutant (JP1) Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol., 70, 5847–5852.

    Article  Google Scholar 

  • Xavier, J. B., Picioreanu, C., & van Loosdrecht, M. C. M. (2005). A general description of detachment for multidimensional modelling of biofilms. Biotechnol. Bioeng., 91, 651–669.

    Article  Google Scholar 

  • Zhang, T. C., Fu, Y. C., & Bishop, P. L. (1994). Competition in biofilms. Water Sci. Technol., 29, 263–270.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Klapper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapper, I., Szomolay, B. An Exclusion Principle and the Importance of Mobility for a Class of Biofilm Models. Bull Math Biol 73, 2213–2230 (2011). https://doi.org/10.1007/s11538-010-9621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9621-5

Keywords

Navigation