Skip to main content
Log in

Oscillations in Biochemical Reaction Networks Arising from Pairs of Subnetworks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biochemical reaction models show a variety of dynamical behaviors, such as stable steady states, multistability, and oscillations. Biochemical reaction networks with generalized mass action kinetics are represented as directed bipartite graphs with nodes for species and reactions. The bipartite graph of a biochemical reaction network usually contains at least one cycle, i.e., a sequence of nodes and directed edges which starts and ends at the same species node. Cycles can be positive or negative, and it has been shown that oscillations can arise as a result of either a positive cycle or a negative cycle. In earlier work it was shown that oscillations associated with a positive cycle can arise from subnetworks with an odd number of positive cycles. In this article we formulate a similar graph-theoretic condition, which generalizes the negative cycle condition for oscillations. This new graph-theoretic condition for oscillations involves pairs of subnetworks with an even number of positive cycles. An example of a calcium reaction network with generalized mass action kinetics is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon, U. (2007). Network motifs: theory and experimental approaches. Nat. Rev. Genet., 8, 450–461.

    Article  Google Scholar 

  • Angeli, D., De Leenheer, P., & Sontag, E. D. (2006). On the structural monotonicity of chemical reaction networks. In 45th IEEE conference on decision and control, pp. 7–12.

    Chapter  Google Scholar 

  • Angeli, D., Ferrell, J. E., & Sontag, E. D. (2004). Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA, 101, 1822–1827.

    Article  Google Scholar 

  • Asner, B. (1970). On the total nonnegativity of the Hurwitz matrix. SIAM J. Appl. Math., 18, 407–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Chickarmane, V., Kholodenko, B., & Sauro, H. (2007). Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J. Theor. Biol., 244, 68–76.

    Article  MathSciNet  Google Scholar 

  • Clarke, B. (1980). Stability of complex reaction networks. Adv. Chem. Phys., 43, 1–213.

    Article  Google Scholar 

  • Clarke, B., & Jiang, W. (1993). Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov–Zhabotinskii system. J. Chem. Phys., 99, 4464–4478.

    Article  Google Scholar 

  • Craciun, G., & Feinberg, M. (2005). Multiple equilibria in complex chemical reaction networks, I: the injectivity property. SIAM J. Appl. Math., 65, 1526–1546.

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun, G., & Feinberg, M. (2006). Multiple equilibria in complex chemical reaction networks, II: the species-reactions graph. SIAM J. Appl. Math., 66, 1321–1338.

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun, G., Tang, Y., & Feinberg, M. (2006). Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA, 103(23), 8697–8702.

    Article  Google Scholar 

  • Elowitz, M., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338.

    Article  Google Scholar 

  • Fallat, S. (2001). Bidiagonal factorization of totally nonnegative matrices. Am. Math. Mon., 108, 697–712.

    Article  MathSciNet  MATH  Google Scholar 

  • Forger, D., & Peskin, C. (2003). A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. USA, 100, 14806–14811.

    Article  Google Scholar 

  • Gantmacher, F. R. (1959). Applications of the theory of matrices. New York: Interscience.

    MATH  Google Scholar 

  • Gatermann, K., Eiswirth, M., & Sensse, A. (2005). Toric ideals and graph theory to analyze Hopf bifurcation in mass action systems. J. Symb. Comput., 40, 1361–1382.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldbeter, A. (1995). A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B, Biol. Sci., 261, 319–324.

    Article  Google Scholar 

  • Goldbeter, A. (2007). Biological rhythms as temporal structures. Adv. Chem. Phys., 135, 253–295.

    Article  Google Scholar 

  • Goodwin, B. C. (1965). Oscillator behavior in enzymatic control processes. Adv. Enzyme Regul., 3, 425–438.

    Article  Google Scholar 

  • Goryachev, A., & Pokliho, A. (2008). Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett., 582, 1437–1443.

    Article  Google Scholar 

  • Griffith, J. (1968). Mathematics of cellular control processes, I: negative feedback to one gene. J. Theor. Biol., 20, 202–208.

    Article  Google Scholar 

  • Harary, F. (1969). Graph theory. Reading: Addison-Wesley.

    Google Scholar 

  • Horn, F., & Jackson, R. (1972). General mass action kinetics. Arch. Ration. Mech. Anal., 47, 81–116.

    Article  MathSciNet  Google Scholar 

  • Kitano, H. (2002). Systems biology: a brief review. Science, 295, 1662–1664.

    Article  Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nat. Rev. Genet., 5, 826–837.

    Article  Google Scholar 

  • Kruse, K., & Julicher, Fr. (2005). Oscillations in cell biology. Curr. Opin. Cell Biol., 17, 20–26.

    Article  Google Scholar 

  • Kuznetsov, Y. (2004). Elements of applied bifurcation theory. New York: Springer.

    MATH  Google Scholar 

  • Liu, W. M. (1994). Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl., 182, 250–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster, P., & Tismenetsky, M. (1985). The theory of matrices. Orlando: Academic Press.

    MATH  Google Scholar 

  • Locke, J. et al. (2006). Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol., 2, 59.

    Article  Google Scholar 

  • Milo, R. et al. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

    Article  Google Scholar 

  • Mincheva, M., & Craciun, G. (2008). Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks. Proc. IEEE, 96, 1281–1291.

    Article  Google Scholar 

  • Mincheva, M., & Roussel, M. R. (2006). A graph-theoretic method for detecting Turing bifurcations. J. Chem. Phys., 125, 204102.

    Article  Google Scholar 

  • Mincheva, M., & Roussel, M. R. (2007a). Graph-theoretic methods for the analysis of chemical and biochemical networks, I: multistability and oscillations in ordinary differential equation models. J. Math. Biol., 55, 61–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Mincheva, M., & Roussel, M. R. (2007b). Graph-theoretic methods for the analysis of chemical and biochemical networks, II: oscillations in networks with delays. J. Math. Biol., 55, 87–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Reidl, J. et al. (2006). Model of calcium oscillations due to negative feedback in olfactory cilia. Biophys. J., 90, 1147–1155.

    Article  Google Scholar 

  • Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Schuster, S. (1999). Studies on the stoichiometric structure of enzymatic reaction systems. Theory Biosci. 118, 125–139.

    Google Scholar 

  • Schuster, S., & Höfer, T. (1991). Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. J. Chem. Soc. Faraday Trans., 87, 2561–2566.

    Article  Google Scholar 

  • Smolen, P., Baxter, D. A., & Byrne, J. H. (2000). Modeling transcriptional control in gene networks. Methods, recent results, and future directions. Bull. Math. Biol., 62, 247–292.

    Article  Google Scholar 

  • Tsai, T. et al. (2008). Robust, tunable biological oscillators from interlinked positive and negative feedback loops. Science, 321, 126–129.

    Article  Google Scholar 

  • Tyson, J. J. (1975). Classification of instabilities in chemical reaction systems. J. Chem. Phys., 62, 1010–1015.

    Article  Google Scholar 

  • Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl. Acad. Sci. USA, 88, 7328–7332.

    Article  Google Scholar 

  • Tyson, J. J., & Othmer, H. (1978). The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol., 5, 1–62.

    Google Scholar 

  • Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol., 15, 221–231.

    Article  Google Scholar 

  • Volpert, A., & Hudyaev, S. (1985). Analyses in classes of discontinuous functions and equations of mathematical physics. Dordrecht: Martinus Nijhoff (Chap. 12).

    Google Scholar 

  • Volpert, A., & Ivanova, A. (1987). Mathematical models in chemical kinetics. In Mathematical modeling (pp. 57–102). Moscow: Nauka (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Mincheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mincheva, M. Oscillations in Biochemical Reaction Networks Arising from Pairs of Subnetworks. Bull Math Biol 73, 2277–2304 (2011). https://doi.org/10.1007/s11538-010-9620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9620-6

Keywords

Navigation