Skip to main content
Log in

A Model of NMDA Receptor Control of F-actin Treadmilling in Synaptic Spines and Their Growth

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Synaptic spines grow as a consequence of the formation of F-actin filaments at the spine head. The dynamics of F-actin in the spine head upon excitation of N-methy-D-aspartate (NMDA) receptors has recently been investigated experimentally, but there is no quantitative account of how these dynamic changes occur upon activation of these receptors; this we now supply. Dynamics of F-actin at the apex of lamellipodia have been investigated in detail, giving rise to the treadmilling theory of F-actin dynamics, involving catalysis by profilin, for which quantitative models are now available. Here, we adapt such a model to describe the dynamics of F-actin in the synaptic-spine head and show that it gives quantitative descriptions of this treadmilling phenomena which are well fitted by Monte Carlo simulations. Next, the means by which excitation of NMDA receptors enhances the activity of profilin through activity of the Rho small GTPase RhoA and the specific kinase ROCK is discussed. This is then used to model the NMDA receptor excitatory enhancement of profilin and so the treadmilling process of F-actin dynamics in spine growth. Such modelling provides a quantitative description of the synaptic-spine dynamics of the filamentous to globular actin ratio that is observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, R., Zha, X., Green, S., & Dailey, M. (2006). Synaptic activity and F-actin coordinately regulate CaMKIIα localization to dendritic postsynaptic sites in developing hippocampal slices. Mol. Cell. Neurosci., 31(1), 37–51.

    Article  Google Scholar 

  • Applewhite, D., Barzik, M., Kojima, S., Svitkina, T., Gertler, F., & Borisy, G. (2007). Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol. Biol. Cell, 18(7), 2579.

    Article  Google Scholar 

  • Asanuma, K., Kim, K., Oh, J., Giardino, L., Chabanis, S., Faul, C., Reiser, J., & Mundel, P. (2005). Synaptopodin regulates the actin-bundling activity of α-actin in an isoform-specific manner. J. Clin. Invest., 115(5), 1188–1198.

    Google Scholar 

  • Asrican, B., Lisman, J., & Otmakhov, N. (2007). Synaptic strength of individual spines correlates with bound Ca2+ calmodulin-dependent kinase II. J. Neurosci., 27(51), 14007.

    Article  Google Scholar 

  • Bennett, M. (2009). Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis neuregulin/ErbB4 and synapse regression. Aust. N. Z. J. Psychiatry, 43(8), 711–721.

    Article  Google Scholar 

  • Bramham, C., & Wells, D. (2007). Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci., 8(10), 776–789.

    Article  Google Scholar 

  • Buchs, P., & Muller, D. (1996). Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA, 93(15), 8040–8045.

    Article  Google Scholar 

  • Cai, Y., Biais, N., Giannone, G., Tanase, M., Jiang, G., Hofman, J., Wiggins, C., Silberzan, P., Buguin, A., Ladoux, B., et al. (2006). Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J., 91(10), 3907–3920.

    Article  Google Scholar 

  • Carlisle, H., & Kennedy, M. (2005). Spine architecture and synaptic plasticity. Trends Neurosci., 28(4), 182–187.

    Article  Google Scholar 

  • Carvalho, A., Caldeira, M., Santos, S., & Duarte, C. (2008). Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br. J. Pharmacol., 153(1), 310.

    Article  Google Scholar 

  • Cingolani, L., & Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci., 9(5), 344–356.

    Article  Google Scholar 

  • Da Silva, J., Medina, M., Zuliani, C., Di Nardo, A., Witke, W., & Dotti, C. (2003). RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J. Cell Biol., 162(7), 1267.

    Article  Google Scholar 

  • Delorme, V., Machacek, M., DerMardirossian, C., Anderson, K., Wittmann, T., Hanein, D., Waterman-Storer, C., Danuser, G., & Bokoch, G. (2007). Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell, 13(5), 646–662.

    Article  Google Scholar 

  • Edwards, D., Sanders, L., Bokoch, G., & Gill, G. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol., 1, 253–259.

    Article  Google Scholar 

  • Ethell, I., & Pasquale, E. (2005). Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol., 75(3), 161–205.

    Article  Google Scholar 

  • Fifkova, E., & Morales, M. (1989). Calcium-regulated contractile and cytoskeletal proteins in dendritic spines may control synaptic plasticity. Ann. NY Acad. Sci., 568(1), 131–137.

    Article  Google Scholar 

  • Haeckel, A., Ahuja, R., Gundelfinger, E., Qualmann, B., & Kessels, M. (2008). The actin-binding protein Abp1 controls dendritic spine morphology and is important for spine head and synapse formation. J. Neurosci., 28(40), 10031.

    Article  Google Scholar 

  • Higgs, H., & Pollard, T. (2001). Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Ann. Rev. Biochem., 70(1), 649–676.

    Article  Google Scholar 

  • Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G., & Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron, 57(5), 719–729.

    Article  Google Scholar 

  • Hosokawa, T., Rusakov, D., Bliss, T., & Fine, A. (1995). Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci., 15(8), 5560–5573.

    Google Scholar 

  • Huber, F., Käs, J., & Stuhrmann, B. (2008). Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys. J., 95(12), 5508–5523.

    Article  Google Scholar 

  • Lin, C., Espreafico, E., Mooseker, M., & Forscher, P. (1997). Myosin drives retrograde F-actin flow in neuronal growth cones. Biol. Bull. 192, 1, 183–185.

    Article  Google Scholar 

  • Mogilner, A. (2006). On the edge: modeling protrusion. Curr. Opin. Cell Biol., 18(1), 32–39.

    Article  Google Scholar 

  • Mogilner, A., & Edelstein-Keshet, L. (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83(3), 1237–1258.

    Article  Google Scholar 

  • Nakagawa, T., Engler, J., & Sheng, M. (2004). The dynamic turnover and functional roles of α-actinin in dendritic spines. Neuropharmacology, 47(5), 734–745.

    Article  Google Scholar 

  • Nakayama, A., & Luo, L. (2000). Intracellular signaling pathways that regulate dendritic spine morphogenesis. Hippocampus, 10(5).

  • Okamoto, K., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci., 7(10), 1104–1112.

    Article  Google Scholar 

  • Okamoto, K., Narayanan, R., Lee, S., Murata, K., & Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl. Acad. Sci. USA, 104(15), 6418.

    Article  Google Scholar 

  • Okubo-Suzuki, R., Okada, D., Sekiguchi, M., & Inokuchi, K. (2008). Synaptopodin maintains the neural activity-dependent enlargement of dendritic spines in hippocampal neurons. Mol. Cell. Neurosci., 38(2), 266–276.

    Article  Google Scholar 

  • Pollard, T., & Borisy, G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465.

    Article  Google Scholar 

  • Racz, B., & Weinberg, R. (2006). Spatial organization of cofilin in dendritic spines. Neuroscience, 138(2), 447–456.

    Article  Google Scholar 

  • Racz, B., & Weinberg, R. (2008). Organization of the Arp2/3 complex in hippocampal spines. J. Neurosci., 28(22), 5654.

    Article  Google Scholar 

  • Rohm, B., Rahim, B., Kleiber, B., Hovatta, I., & Püschel, A. (2000). The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett., 486(1), 68–72.

    Article  Google Scholar 

  • Rostaing, P., Real, E., Siksou, L., Lechaire, J., Boudier, T., Boeckers, T., Gertler, F., Gundelfinger, E., Triller, A., & Marty, S. (2006). Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur. J. Neurosci., 24(12), 3463.

    Article  Google Scholar 

  • Saneyoshi, T., Wayman, G., Fortin, D., Davare, M., Hoshi, N., Nozaki, N., Natsume, T., & Soderling, T. (2008). Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/βPIX signaling complex. Neuron, 57(1), 94–107.

    Article  Google Scholar 

  • Schaus, T., Taylor, E., & Borisy, G. (2007). Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc. Natl. Acad. Sci. USA, 104(17), 7086.

    Article  Google Scholar 

  • Schmidt, J., Morgan, P., Dowell, N., & Leu, B. (2002). Myosin light chain phosphorylation and growth cone motility. J. Neurobiol., 52(3).

  • Schubert, V., & Dotti, C. (2007). Transmitting on actin: synaptic control of dendritic architecture. J. Cell Sci., 120(2), 205.

    Article  Google Scholar 

  • Schubert, V., Da Silva, J., & Dotti, C. (2006). Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J. Cell Biol., 172(3), 453.

    Article  Google Scholar 

  • Sharma, K., Fong, D., & Craig, A. (2006). Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol. Cell. Neurosci., 31(4), 702–712.

    Article  Google Scholar 

  • Shen, K., Teruel, M., Subramanian, K., & Meyer, T. (1998). CaMKII functions as an F-actin targeting module that localizes CaMKII/heterooligomers to dendritic spines. Neuron, 21, 593–606.

    Article  Google Scholar 

  • Svitkina, T., Verkhovsky, A., McQuade, K., & Borisy, G. (1997). Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol., 139(2), 397–415.

    Article  Google Scholar 

  • Svitkina, T., Bulanova, E., Chaga, O., Vignjevic, D., Kojima, S., Vasiliev, J., & Borisy, G. (2003). Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol., 160(3), 409–421.

    Article  Google Scholar 

  • Ultanir, S., Kim, J., Hall, B., Deerinck, T., Ellisman, M., & Ghosh, A. (2007). Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc. Natl. Acad. Sci. USA, 104(49), 19553–19558.

    Article  Google Scholar 

  • Van Troys, M., Huyck, L., Leyman, S., Dhaese, S., Vandekerkhove, J., & Ampe, C. (2008). Ins and outs of ADF/cofilin activity and regulation. Eur. J. Cell Biol., 87(8–9), 649–667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max R. Bennett.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

Monte Carlo Method (PDF 37.4 KB)

MP4 5.92 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, M.R., Farnell, L. & Gibson, W.G. A Model of NMDA Receptor Control of F-actin Treadmilling in Synaptic Spines and Their Growth. Bull Math Biol 73, 2109–2131 (2011). https://doi.org/10.1007/s11538-010-9614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9614-4

Keywords

Navigation