Skip to main content
Log in

Searching for Spatial Patterns in a Pollinator–Plant–Herbivore Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper deals with the spatio-temporal dynamics of a pollinator–plant–herbivore mathematical model. The full model consists of three nonlinear reaction–diffusion–advection equations defined on a rectangular region. In view of analyzing the full model, we firstly consider the temporal dynamics of three homogeneous cases. The first one is a model for a mutualistic interaction (pollinator–plant), later on a sort of predator–prey (plant–herbivore) interaction model is studied. In both cases, the interaction term is described by a Holling response of type II. Finally, by considering that the plant population is the unique feeding source for the herbivores, a mathematical model for the three interacting populations is considered. By incorporating a constant diffusion term into the equations for the pollinators and herbivores, we numerically study the spatiotemporal dynamics of the first two mentioned models. For the full model, a constant diffusion and advection terms are included in the equation for the pollinators. For the resulting model, we sketch the proof of the existence, positiveness, and boundedness of solution for an initial and boundary values problem. In order to see the separated effect of the diffusion and advection terms on the final population distributions, a set of numerical simulations are included. We used homogeneous Dirichlet and Neumann boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, W. (1985). Models for mutual attraction and aggregation of motile individuals. In Lecture notes in biomathematics (Vol. 57, pp. 33–38).

    Google Scholar 

  • Arrowsmith, D. K., & Place, C. M. (1998). Dynamical systems. Differential equations, maps, and chaotic behavior. London: Chapman and Hall.

    Google Scholar 

  • Boucher, D. H. (1982). The biology of mutualism. Oxford: Oxford University Press.

    Google Scholar 

  • Collings, J. B. (1997). The effect of the functional response on the bifurcation behaviour of a mite predator-prey interaction model. J. Math. Biol., 36, 149–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Couzin, I. D., & Krause, J. (2003). Self-organization and collective behaviour in vertebrates. Adv. Study Behav., 32, 1–75.

    Article  Google Scholar 

  • Crawley, M. J. (1992). Natural enemies: The population biology of predators, parasites, and disease. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • García-Ramos, G., Sánchez-Garduño, F., & Maini, P. K. (2000). Dispersal can sharpen parapatric boundaries in a spatially varying environment. Ecology, 81(3), 749–760.

    Google Scholar 

  • Hanski, I. (1997). Metapopulation dynamics: From concepts and observations to predictive models. In I. A. Hanski & M. E. Gilpin (Eds.), Metapopulation biology (pp. 69–91). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Hanski, I. (1999). Metapopulation ecology. New York: Oxford University Press.

    Google Scholar 

  • Holmes, E. E., Lewis, M. A., Banks, J. E., & Veit, R. R. (1994). Partial differential equations in ecology: Spatial interactions and population. Ecology, 75(1), 17–29.

    Article  Google Scholar 

  • Jang, S. R. (2002). Dynamics of herbivore-plants-pollinator models. J. Math. Biol., 44, 129–149.

    Article  MATH  MathSciNet  Google Scholar 

  • Kierstead, H., & Slobodkin, L. B. (1953). The size of water masses containing plankton blooms. J. Mar. Res., 12, 141–147.

    Google Scholar 

  • Kot, M. (2001). Elements of mathematical ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kot, M., & Schaffer, W. M. (1986). Discrete-time growth dispersal models. Math. Biosci., 80, 109–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuznetsov, Y. A. (2004). Applied mathematical series: Vol. 112. Elements of applied bifurcation theory. Berlin: Springer.

    MATH  Google Scholar 

  • Levin, S. A., & Segel, L. A. (1976). Hypothesis for origin of plantktonic patchiness. Nature, 259, 659.

    Article  Google Scholar 

  • Malchow, H., Petrovskii, S. V., & Venturino, E. (2007). Spatiotemporal patterns in ecology and epidemiology: Theory, models and simulation. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Market, P. A. (2002). Metapopulations. In H. A. Mooney & J. G. Canadell (Eds.), The Earth system: Biological and ecological dimensions of global environmental change (Vol. 2, pp. 411–420). Chichester: Wiley.

    Google Scholar 

  • May, R. M., & Southwood, T. R. E. (1990). Introduction. In B. Shorrocks & I. R. Swingland (Eds.), Living in a patchy environment (pp. 1–22). Oxford: Oxford University Press.

    Google Scholar 

  • Mimura, M., Nishiura, Y., & Yamaguti, M. (1979). Some diffusive prey and predator systems and their bifurcation problem. Ann. N.Y. Acad. Sci., 316, 490–510.

    Article  MathSciNet  Google Scholar 

  • Molofsky, J., & Bever, J. D. (2004). A new kind of ecology? Bioscience, 54(5), 440–446.

    Article  Google Scholar 

  • Muratov, C. B., & Osipov, V. V. (1996). Scenarios of domain patterns in a reaction-diffusion system. Phys. Rev. E, 54, 4860.

    Article  MathSciNet  Google Scholar 

  • Murray, J. D. (2003). Mathematical biology II: Spatial models and biomedical applications. Berlin: Springer.

    MATH  Google Scholar 

  • Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, and herds. Adv. Biophys., 22, 1–94.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems, modern perspective. Berlin: Springer.

    Google Scholar 

  • Pao, C. V. (1992). Nonlinear parabolic and elliptic equations. New York: Plenum Press.

    MATH  Google Scholar 

  • Quilantán, I. (2010): Dinámica espacio-temporal de una interacción polinizador-planta-herbívoro. MSc Thesis on Applied Mathematics, DACB, UJAT, México.

  • Sánchez-Garduño, F. (2001). Continuous density-dependent diffusion modelling in ecology: A review. Recent Res. Ecol., 1, 115–127.

    Google Scholar 

  • Sánchez-Garduño, F., & Breña-Medina, V. (2010). Existence, positiveness and boundness of solutions in a pollinator-plant-herbivore mathematical model. In preparation.

  • Sánchez-Garduño, F., Maini, P. K., & Pérez-Velázquez, J. (2010). A nonlinear degenerate equation for direct aggregation and traveling wave dynamics. Discrete Contin. Dyn. Syst., Ser. B, 13(2), 455–487.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A., & Jackson, J. L. (1972). Dissipative structure: An explanation and an ecological example. J. Theor. Biol., 37, 545–559.

    Article  Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    MATH  MathSciNet  Google Scholar 

  • Skellam, J. G. (1973). The formulation and interpretation of mathematical models of diffusionary processes in population biology. In M. S. Batchellet et al. (Eds.), The mathematical theory of the dynamics in biological populations. New York: Academic Press.

    Google Scholar 

  • Soberón, J. M., & Martínez del Río, C. (1981). The dynamics of a plant-pollinator interaction. J. Theor. Biol., 91, 363–378.

    Article  Google Scholar 

  • Steele, J. H. (1974). Spatial heterogeneity and population stability. Nature, 248, 83.

    Article  Google Scholar 

  • Turchin, P., & Kareiva, P. (1989). Aggregation in aphis varians: An effective strategy for reducing risk. Ecology, 70(4), 1008–1016.

    Article  Google Scholar 

  • Turchin, P. (1998). Quantitative analysis of movement: Population redistribution in animals and plants. Sunderland: Sinauer.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72.

    Article  Google Scholar 

  • Velázquez, G. (2008) Dinámica temporal de una interacción polinizador-planta-herbívoro. MSc Thesis on Applied Mathematics, DACB, UJAT, México.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faustino Sánchez-Garduño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Garduño, F., Breña-Medina, V.F. Searching for Spatial Patterns in a Pollinator–Plant–Herbivore Mathematical Model. Bull Math Biol 73, 1118–1153 (2011). https://doi.org/10.1007/s11538-010-9599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9599-z

Keywords

Navigation