Skip to main content

Advertisement

Log in

The Evolution of Virulence in RNA Viruses under a Competition–Colonization Trade-Off

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

RNA viruses exist in large intra-host populations which display great genotypic and phenotypic diversity. We analyze a model of viral competition between two viruses infecting a constantly replenished cell pool. We assume a trade-off between the ability of the virus to colonize new cells (cell killing rate or virulence) and its local competitiveness (replicative success within coinfected cells). We characterize the conditions that allow for viral spread by means of the basic reproductive number and show that a local coexistence equilibrium exists, which is asymptotically stable. At this equilibrium, the less virulent competitor has a reproductive advantage over the more virulent colonizer reflected by a larger equilibrium population size of the competitor. The equilibria at which one virus outcompetes the other one are unstable, i.e., a second virus is always able to permanently invade. We generalize the two-virus model to multiple viral strains, each displaying a different virulence. To account for the large phenotypic diversity in viral populations, we consider a continuous spectrum of virulences and present a continuum limit of this multiple viral strains model that describes the time evolution of an initial continuous distribution of virulence without mutations. We provide a proof of the existence of solutions of the model equations, analytically assess the properties of stationary solutions, and present numerical approximations of solutions for different initial distributions. Our simulations suggest that initial continuous distributions of virulence evolve toward a distribution that is extremely skewed in favor of competitors. At equilibrium, only the least virulent part of the population survives. The discrepancy of this finding in the continuum limit with the two-virus model is attributed to the skewed equilibrium subpopulation sizes and to the transition to a continuum. Consequently, in viral quasispecies with high virulence diversity, the model predicts collective virulence attenuation. This result may contribute to understanding virulence attenuation, which has been reported in several experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M., & May, R. M. (1982). Coevolution of hosts and parasites. Parasitology, 85(Pt 2), 411–426.

    Article  Google Scholar 

  • Barnett, S., & Šiljak, D. D. (1977). Routh’s algorithm: a centennial survey. SIAM Rev., 19(3), 472–489.

    Article  MATH  MathSciNet  Google Scholar 

  • Boldin, B., & Diekmann, O. (2008). Superinfections can induce evolutionarily stable coexistence of pathogens. J. Math. Biol., 56(5), 635–672. doi:10.1007/s00285-007-0135-1.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonhoeffer, S., Lenski, R. E., & Ebert, D. (1996). The curse of the pharaoh: the evolution of virulence in pathogens with long living propagules. Proc. Biol. Sci., 263(1371), 715–721. doi:10.1098/rspb.1996.0107.

    Article  Google Scholar 

  • Bonhoeffer, S., May, R. M., Shaw, G. M., & Nowak, M. A. (1997). Virus dynamics and drug therapy. Proc. Nat. Acad. Sci. USA, 94(13), 6971–6976. URL http://www.pnas.org/content/94/13/6971.abstract.

    Article  Google Scholar 

  • Bonhoeffer, S., & Nowak, M. A. (1994). Mutation and the evolution of virulence. Proc. Biol. Sci., 258(1352), 133–140.

    Article  Google Scholar 

  • Bremermann, H. J., & Thieme, H. R. (1989). A competitive exclusion principle for pathogen virulence. J. Math. Biol., 27(2), 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  • Bull, J. J. (1994). Virulence. Evolution, 48(5), 1423–1437.

    Article  Google Scholar 

  • Bull, J. J., Millstein, J., Orcutt, J., & Wichman, H. A. (2006). Evolutionary feedback mediated through population density, illustrated with viruses in chemostats. Am. Nat., 167(2), E39–E51. doi:10.1086/499374.

    Article  Google Scholar 

  • Coombs, D., Gilchrist, M. A., & Ball, C. L. (2007). Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens. Theor. Popul. Biol., 72(4), 576–591. doi:10.1016/j.tpb.2007.08.005.

    Article  Google Scholar 

  • Cooper, V. S., Reiskind, M. H., Miller, J. A., Shelton, K. A., Walther, B. A., Elkinton, J. S., & Ewald, P. W. (2002). Timing of transmission and the evolution of virulence of an insect virus. Proc. Biol. Sci., 269(1496), 1161–1165. doi:10.1098/rspb.2002.1976.

    Article  Google Scholar 

  • Cushing, J. M. (1977). Integrodifferential equations and delay models in population dynamics. Lecture notes in biomathematics. New York: Springer.

    MATH  Google Scholar 

  • Deuflhard, P., & Bornemann, F. (2008). Numerische Mathematik: Vol. 2. de Gruyter Lehrbuch [de Gruyter Textbook]. Berlin: de Gruyter (revised ed.). Gewöhnliche Differentialgleichungen [Ordinary differential equations].

    Google Scholar 

  • Domingo, E. (Ed.) (2006). Quasispecies: concepts and implications for virology. Current topics in microbiology and immunology. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Domingo, E., & Holland, J. J. (1997). RNA virus mutations and fitness for survival. Annu. Rev. Microbiol., 51, 151–178. doi:10.1146/annurev.micro.51.1.151.

    Article  Google Scholar 

  • Eigen, M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58(10), 465–523.

    Article  Google Scholar 

  • Eigen, M., McCaskill, J., & Schuster, P. (1988). Molecular quasi-species. J. Phys. Chem., 92(24), 6881–6891.

    Article  Google Scholar 

  • Epperson, J. F. (2007). An introduction to numerical methods and analysis. New York: Wiley-Interscience (revised ed.).

    Google Scholar 

  • Ewald, P. W. (1983). Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol. Syst., 14, 465–485.

    Article  Google Scholar 

  • Frank, S. A. (1996). Models of parasite virulence. Q. Rev. Biol., 71(1), 37–78.

    Article  Google Scholar 

  • García-Arriaza, J., Ojosnegros, S., Dávila, M., Domingo, E., & Escarmís, C. (2006). Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes. J. Mol. Biol., 360(3), 558–572. doi:10.1016/j.jmb.2006.05.027. URL http://www.sciencedirect.com/science/article/B6WK7-4K1G466-6/2/0e0dded6dbae0dad0b454d2ff9395a7a.

    Article  Google Scholar 

  • Holland, J. J., Torre, J. C. D. L., & Steinhauer, D. A. (1992). RNA virus populations as quasispecies. Curr. Top. Microbiol. Immunol., 176, 1–20.

    Google Scholar 

  • Jung, A., Maier, R., Vartanian, J., Bocharov, G., Jung, V., Fischer, U., Meese, E., Wain-Hobson, S., & Meyerhans, A. (2002). Recombination: multiply infected spleen cells in HIV patients. Nature, 418, 144.

    Article  Google Scholar 

  • Königsberger, K. (2004). Analysis 2 (5th ed.). Berlin, Heidelberg: Springer.

    MATH  Google Scholar 

  • Korobeinikov, A. (2004). Global properties of basic virus dynamics models. Bull. Math. Biol., 66(4), 879–883.

    Article  MathSciNet  Google Scholar 

  • Krakauer, D. C., & Komarova, N. L. (2003). Levels of selection in positive-strand virus dynamics. J. Evol. Biol., 16(1), 64–73.

    Article  Google Scholar 

  • Kryazhimskiy, S., Dieckmann, U., Levin, S. A., & Dushoff, J. (2007). On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. PLoS Comput. Biol., 3(8), e159. doi:10.1371/journal.pcbi.0030159.

    Article  MathSciNet  Google Scholar 

  • Lenski, R. E., & May, R. M. (1994). The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J. Theor. Biol., 169(3), 253–265.

    Article  Google Scholar 

  • May, R. M., & Nowak, M. A. (1994). Superinfection, metapopulation dynamics, and the evolution of diversity. J. Theor. Biol., 170(1), 95–114. doi:10.1006/jtbi.1994.1171.

    Article  MathSciNet  Google Scholar 

  • Novella, I. S., Reissig, D. D., & Wilke, C. O. (2004). Density-dependent selection in vesicular stomatitis virus. J. Virol., 78(11), 5799–5804. doi:10.1128/JVI.78.11.5799-5804.2004.

    Article  Google Scholar 

  • Nowak, M., & May, R. (2000a). Virus dynamics. London: Oxford University Press.

    MATH  Google Scholar 

  • Nowak, M. A. (2006). Evolutionary dynamics. Cambridge: The Belknap Press of Harvard University Press.

    MATH  Google Scholar 

  • Nowak, M. A., & May, R. M. (1994). Superinfection and the evolution of parasite virulence. Proc. Biol. Sci., 255(1342), 81–89. doi:10.1098/rspb.1994.0012.

    Article  Google Scholar 

  • Nowak, M. A., & May, R. M. (2000b). Virus dynamics. Mathematical principles of immunology and virology. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Ojosnegros, S., Beerenwinkel, N., Antal, T., Nowak, M. A., Escarmísa, C., & Domingo, E. (2010a). Competition–colonization dynamics in an RNA virus. Proc. Natl. Acad. Sci. USA, 107(5), 2108–2112. doi:10.1073/pnas.0909787107.

    Article  Google Scholar 

  • Ojosnegros, S., Beerenwinkel, N., & Domingo, E. (2010b). Competition–colonization dynamics: an ecology approach to quasispecies dynamics and virulence evolution in RNA viruses. Commun. Integr. Biol., 3(4), 333–336.

    Article  Google Scholar 

  • Perelson, A., & Nelson, P. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41(1), 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Sanz-Ramos, M., Diaz-San Segundo, F., Escarmis, C., Domingo, E., & Sevilla, N. (2008). Hidden virulence determinants in a viral quasispecies in vivo. J. Virol., 82(21), 10,465–10,476. doi:10.1128/JVI.00825-08. URL http://jvi.asm.org/cgi/content/abstract/82/21/10465.

    Article  Google Scholar 

  • Tilman, D. (1994). Competition and biodiversity in spatially structure habitats. Ecology, 75, 2–16.

    Article  Google Scholar 

  • De la Torre, J. C., & Holland, J. J. (1990). RNA virus quasispecies populations can suppress vastly superior mutant progeny. J. Virol., 64(12), 6278–6281.

    Google Scholar 

  • Turner, P. E., & Chao, L. (1999). Prisoner’s dilemma in an RNA virus. Nature, 398(6726), 441–443. doi:10.1038/18913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Delgado-Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado-Eckert, E., Ojosnegros, S. & Beerenwinkel, N. The Evolution of Virulence in RNA Viruses under a Competition–Colonization Trade-Off. Bull Math Biol 73, 1881–1908 (2011). https://doi.org/10.1007/s11538-010-9596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9596-2

Keywords

Navigation