Skip to main content
Log in

Instabilities on Prey Dynamics in Jellyfish Feeding

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the dynamics of plankton in the wake of a jellyfish. Using an analytical approach, we derive a reduced-order equation that governs the prey motion which is modeled as neutrally-buoyant inertial particle. This modified equation takes into account both the effects of prey inertia and self-propulsion and enables us to calculate both the attracting and repelling Lagrangian coherent structures for the prey motion. For the case of zero self-propulsion, it is simplified to the equation of motion for infinitesimal fluid particles. Additionally, we determine the critical size of prey over which instabilities on its motion occur resulting in different dynamics from those predicted by the reduced-order equation even for the case of zero self-propulsion. We illustrate our theoretical findings through an experimentally measured velocity field of a jellyfish. Using the inertial equation, we calculate the Lagrangian coherent structures that characterize prey motion as well as the instability regions over which larger prey will have different dynamics even for the case of zero self-propulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babiano, A., Cartwright, J. H. E., Piro, O., & Provenzale, A. (2000). Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett., 84, 5764.

    Article  Google Scholar 

  • Bailey, K. M., & Batty, R. S. (1983). A laboratory study of predation by Aurelia aurita on larval herring (Clupea harengus): experimental observations compared with model predictions. Mar. Biol., 72, 195–301.

    Article  Google Scholar 

  • Benczik, I. J., Toroczkai, Z., & Tél, T. (2002). Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. Phys. Rev. Lett., 89, 164501.

    Article  Google Scholar 

  • Colin, S. P., Costello, J. H., & Klos, E. (2003). In situ swimming and feeding behaviour of eight co-occurring hydromedusae. Mar. Ecol. Prog. Ser., 253, 305–309.

    Article  Google Scholar 

  • Costello, J. H., Colin, S. P., & Dabiri, J. O. (2008). Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr. Biol., 127, 265–290.

    Article  Google Scholar 

  • Franco, E., Pekarek, D. N., Peng, J., & Dabiri, J. O. (2007). Geometry of unsteady fluid transport during fluid structure interactions. J. Fluid Mech., 589, 125–145.

    Article  MATH  MathSciNet  Google Scholar 

  • Haller, G. (2001). Distinguished material surfaces and coherent structures in 3D flid flows. Physica D, 149, 248–277.

    Article  MATH  MathSciNet  Google Scholar 

  • Haller, G., & Sapsis, T. (2008). Where do inertial particles go in fluid flows? Physica D, 237, 573–583.

    Article  MATH  MathSciNet  Google Scholar 

  • Haller, G., & Sapsis, T. (2009). Localized instability and attraction along invariant manifolds. doi:10.1137/08074324X.

  • Hansson, L. J., Moeslund, O., Kiorboe, T., & Riisgard, H. U. (2005). Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Mar. Ecol. Prog. Ser., 304, 117–131.

    Article  Google Scholar 

  • Kawahara, M., Uye, S., Ohtsu, K., & Izumi, H. (2006). Unusual population explosion of the giant jellyfish Nemopilemia nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar. Ecol. Prog. Ser., 307, 161–173.

    Article  Google Scholar 

  • Lenz, P. H., & Hartline, D. K. (1999). Reaction times and force production during escape behavior of a calanoid copepod, Undinula vulgaris. Mar. Biol., 133, 249–258.

    Article  Google Scholar 

  • Madin, L. P. (1988). Feeding behavior of tentaculate predators: in situ observations and a conceptual model. Bull. Mar. Sci., 43, 413–429.

    Google Scholar 

  • Matsakis, S., & Conover, R. J. (1991). Abundance and feeding of medusae and their potential impact as predators on other zooplankton in Bedford Basin (Nova Scotia, Canada) during spring. Can. J. Fish. Aquat. Sci., 48, 1419–1430.

    Article  Google Scholar 

  • Maxey, M., & Riley, J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26, 883.

    Article  MATH  Google Scholar 

  • Peng, J., & Dabiri, J. O. (2009). Transport of inertial particles by Lagrangian Coherent Structures: application to predator-prey interaction in jellyfish feeding. J. Fluid Mech., 623, 75–84.

    Article  MATH  Google Scholar 

  • Purcell, J. E. (2005). Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser., 246, 137–152.

    Article  Google Scholar 

  • Purcell, J. E., & Decker, M. B. (2003). Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnol. Oceanogr., 50, 376–387.

    Article  Google Scholar 

  • Purcell, J. E., & Grover, J. J. (1990). Predation and food limitation as causes of mortality in larval herring at a spawning ground in British Columbia. Mar. Ecol. Prog. Ser., 59, 55–61.

    Article  Google Scholar 

  • Purcell, J. E., & Mills, C. E. (1991). The correlation between nematocyst types and diets in pelagic Hydrozoa. In D. A. Hessinger & H. M. Lenhoff (Eds.), The biology of nematocysts (pp. 463–485). San Diego: Academic Press.

    Google Scholar 

  • Purcell, J. E., Uye, S., & Lo, W. T. (2007). Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar. Ecol. Prog. Ser., 350, 153–174.

    Article  Google Scholar 

  • Sapsis, T., & Haller, G. (2009a). Inertial particle dynamics in a hurricane. J. Atmos. Sci., 66, 2481–2492.

    Article  Google Scholar 

  • Sapsis, T., & Haller, G. (2009b). Instabilities in the dynamics of neutrally buoyant particles. Phys. Fluids, 20, 017102.

    Article  Google Scholar 

  • Shadden, S. C., Dabiri, J. O., & Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids, 18, 047105.

    Article  MathSciNet  Google Scholar 

  • Sullivan, B. K., Garcia, J. R., & Klein-MacPhee, G. (1994). Prey selection by the scyphomedusan predator Aurelia aurita. Mar. Biol., 121, 335–341.

    Article  Google Scholar 

  • Tang, W., Chan, P. W., & Haller, G. (2010). Accurate extraction of LCS over finite domains, with application to flight safety analysis over Hong Kong International Airport. Chaos, 20, 017502.

    Article  MathSciNet  Google Scholar 

  • Vilela, R. D., de Moura, A. P. S., & Grebogi, C. (2006). Finite-size effects on open chaotic advection. Phys. Rev. E, 73, 026302.

    Article  Google Scholar 

  • Waggett, R. J., & Buskey, E. J. (2007). Calanoid copepod escape behavior in response to a visual predator. Mar. Biol., 150, 599–607.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themistoklis Sapsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapsis, T., Peng, J. & Haller, G. Instabilities on Prey Dynamics in Jellyfish Feeding. Bull Math Biol 73, 1841–1856 (2011). https://doi.org/10.1007/s11538-010-9594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9594-4

Keywords

Navigation