Skip to main content

Advertisement

Log in

A Theory of Immunodominance and Adaptive Regulation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Immunodominance refers to the phenomenon in which simultaneous T cell responses against multiple target epitopes organize themselves into distinct and reproducible hierarchies. In many cases, eliminating the response to the most dominant epitope allows responses to subdominant epitopes to expand more fully. The mechanism that drives immunodominance is still not well understood, although various hypotheses have been proposed. One of the more prevalent views is that immunodominance is driven by passive T cell competition for space on antigen presenting cells (APCs) or for access to specific MHC:epitope complexes on the surface of APCs. However, several experimental studies suggest that passive competition alone may not fully explain the robustness of immunodominance under physiological conditions or varying proportions of antigen-specific precursor T cells and APCs. These studies propose that a mechanism of active suppression among T cells gives rise to immunodominance.

In this work, we present the novel hypothesis that mutual suppression of simultaneous T cell responses results from the appearance of adaptive regulatory T cells (iTregs) during the course of the overall T cell expansion. We extend the mathematical model of T cell expansion proposed in Kim et al. (Bull. Math. Biol. 2009, doi:10.1007/s11538-009-9463-1) to consider multiple, concurrent T cell responses. The model is formulated as a system of independent feedback loops, in which antigen-specific T cell population produces a nonspecific feedback response. Our simulations show that the fastest response to expand gives rise to a de novo generated population of iTregs that induces a premature contraction in slower or weaker T cell responses, leading to a hierarchical expansion as observed in immunodominance. Furthermore, in some cases, removing the dominant T cell response allows previously subdominant responses to develop more fully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antia, R., Bergstrom, C. T., Pilyugin, S. S., Kaech, S. M., & Ahmed, R. (2003). Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol., 221(4), 585–598.

    Article  MathSciNet  Google Scholar 

  • Borghans, J. A., Taams, L. S., Wauben, M. H., & de Boer, R. J. (1999). Competition for antigenic sites during T cell proliferation: a mathematical interpretation of in vitro data. Proc. Natl. Acad. Sci. USA, 96(19), 10782–10787.

    Article  Google Scholar 

  • Bousso, P., & Robey, E. (2003). Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol., 4(6), 579–585.

    Article  Google Scholar 

  • Catron, D. M., Itano, A. A., Pape, K. A., Mueller, D. L., & Jenkins, M. K. (2004). Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity, 21(3), 341–347.

    Article  Google Scholar 

  • Chang, C. C., Ciubotariu, R., Manavalan, J. S., Yuan, J., Colovai, A. I., Piazza, F., Lederman, S., Colonna, M., Cortesini, R., Dalla-Favera, R., & Suciu-Foca, N. (2002). Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol., 3(3), 237–243.

    Article  Google Scholar 

  • De Boer, R. J., & Perelson, A. S. (1994). T cell repertoires and competitive exclusion. J. Theor. Biol., 169(4), 375–390.

    Article  Google Scholar 

  • De Boer, R. J., & Perelson, A. S. (1995). Toward a general function describing T cell proliferation. J. Theor. Biol., 175(4), 567–576.

    Article  Google Scholar 

  • De Boer, R. J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., & Perelson, A. S. (2001). Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus. J. Virol., 75, 10663–10669.

    Article  Google Scholar 

  • De Boer, R. J., Homann, D., & Perelson, A. S. (2003). Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol., 171(8), 3928–3935.

    Google Scholar 

  • Grufman, P., Wolpert, E. Z., Sandberg, J. K., & Karre, K. (1999). T cell competition for the antigen-presenting cell as a model for immunodominance in the cytotoxic T lymphocyte response against minor histocompatibility antigens. Eur. J. Immunol., 29(7), 2197–2204.

    Article  Google Scholar 

  • Handel, A., & Antia, R. (2008). A simple mathematical model helps to explain the immunodominance of CD8 T cells in influenza A virus infections. J. Virol., 82(16), 7768–7772.

    Article  Google Scholar 

  • Kaech, S. M., & Ahmed, R. (2001). Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol., 2(5), 415–422.

    Google Scholar 

  • Kedl, R. M., Rees, W. A., Hildeman, D. A., Schaefer, B., Mitchell, T., Kappler, J., & Marrack, P. (2000). T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med., 192(8), 1105–1113.

    Article  Google Scholar 

  • Kedl, R. M., Kappler, J. W., & Marrack, P. (2003). Epitope dominance, competition and T cell affinity maturation. Curr. Opin. Immunol., 15(1), 120–127.

    Article  Google Scholar 

  • Kim, P. S., Lee, P. P., & Levy, D. Emergent group dynamics governed by regulatory cells produce a robust primary T cell response. Bull. Math. Biol. doi:10.1007/s11538-009-9463-1. Published on-line Dec. 2009.

  • León, K., Lage, A., & Carneiro, J. (2007a). How regulatory CD25+CD4+ T cells impinge on tumor immunobiology? on the existence of two alternative dynamical classes of tumors. J. Theor. Biol., 247(1), 122–137.

    Article  Google Scholar 

  • León, K., Lage, A., & Carneiro, J. (2007b). How regulatory CD25+CD4+ T cells impinge on tumor immunobiology: the differential response of tumors to therapies. J. Immunol., 179(9), 5659–5668.

    Google Scholar 

  • Manca, F. (1992). Selective functional depletion of HIV gp120 peptides complexed with MHC from antigen-presenting cells engaged with specific T lymphocytes. J. Immunol., 149(3), 796–800.

    Google Scholar 

  • Mercado, R., Vijh, S., Allen, S. E., Kerksiek, K., Pilip, I. M., & Pamer, E. G. (2000). Early programming of T cell populations responding to bacterial infection. J. Immunol., 165(12), 6833–6839.

    Google Scholar 

  • Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D., & Parker, I. (2004a). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA, 101(4), 998–1003.

    Article  Google Scholar 

  • Miller, M. J., Safrina, O., Parker, I., & Cahalan, M. D. (2004b). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med., 200(7), 847–856.

    Article  Google Scholar 

  • Nowak, M. A. (1996). Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation. Semin. Virol., 7, 83–92.

    Article  Google Scholar 

  • Probst, H. C., Dumrese, T., & van den Broek, M. F. (2002). Cutting edge: competition for APC by CTLs of different specificities is not functionally important during induction of antiviral responses. J. Immunol., 168(11), 5387–5391.

    Google Scholar 

  • Razvi, E. S., Jiang, Z., Woda, B. A., & Welsh, R. M. (1995). Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am. J. Pathol., 147(1), 79–91.

    Google Scholar 

  • Renno, T., Attinger, A., Locatelli, S., Bakker, T., Vacheron, S., & MacDonald, H. R. (1999). Cutting edge: apoptosis of superantigen-activated T cells occurs preferentially after a discrete number of cell divisions in vivo. J. Immunol., 162(11), 6312–6315.

    Google Scholar 

  • Roy-Proulx, G., Meunier, M. C., Lanteigne, A. M., Brochu, S., & Perreault, C. (2001). Immunodomination results from functional differences between competing CTL. Eur. J. Immunol., 31(8), 2284–2292.

    Article  Google Scholar 

  • Scherer, A., & Bonhoeffer, S. (2005). Epitope down-modulation as a mechanism for the coexistence of competing T-cells. J. Theor. Biol., 233(3), 379–390.

    Article  Google Scholar 

  • Scherer, A., Salathé, M., & Bonhoeffer, S. (2006). High epitope expression levels increase competition between T cells. PLoS Comput. Biol., 2(8), e109.

    Article  Google Scholar 

  • Sercarz, E. E., Lehmann, P. V., Ametani, A., Benichou, G., Miller, A., & Moudgil, K. (1993). Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol., 11, 729–766.

    Article  Google Scholar 

  • Surh, C. D., & Sprent, J. (2008). Homeostasis of naive and memory T cells. Immunity, 29, 848–862.

    Article  Google Scholar 

  • Taams, L. S., van Rensen, A. J., Poelen, M. C., van Els, C. A., Besseling, A. C., Wagenaar, J. P., van Eden, W., & Wauben, M. H. (1998). Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol., 28(9), 2902–2912.

    Article  Google Scholar 

  • Thomas, P. G., Brown, S. A., Keating, R., Yue, W., Morris, M. Y., So, J., Webby, R. J., & Doherty, P.C. (2007). Hidden epitopes emerge in secondary influenza virus-specific CD8+ T cell responses. J. Immunol., 178(5), 3091–3098.

    Google Scholar 

  • Trimble, L. A., & Lieberman, J. (1998). Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signalling chain of the T-cell receptor complex. Blood, 91(2), 585–594.

    Google Scholar 

  • van der Most, R. G., Murali-Krishna, K., Lanier, J. G., Wherry, E. J., Puglielli, M. T., Blattman, J. N., Sette, A., & Ahmed, R. (2003). Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology, 315(1), 93–102.

    Article  Google Scholar 

  • van Stipdonk, M. J., Hardenberg, G., Bijker, M. S., Lemmens, E. E., Droin, N. M., Green, D. R., & Schoenberger, S. P. (2003). Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol., 4(4), 361–365.

    Article  Google Scholar 

  • Vijh, S., Pilip, I. M., & Pamer, E. G. (1999). Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect. Immun., 67, 1303–1309.

    Google Scholar 

  • Walker, M. R., Carson, B. D., Nepom, G. T., Ziegler, S. F., & Buckner, J. H. (2005). De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc. Natl. Acad. Sci. USA, 102(11), 4103–4108.

    Article  Google Scholar 

  • Weidt, G., Utermohlen, O., Heukeshoven, J., Lehmann-Grube, F., & Deppert, W. (1998). Relationship among immunodominance of single CD8+ T cell epitopes, virus load, and kinetics of primary antiviral CTL response. J. Immunol., 160, 2923–2931.

    Google Scholar 

  • Wodarz, D., & Thomsen, A. R. (2005). Effect of the CTL proliferation program on virus dynamics. Int. Immunol., 17(9), 1269–1276.

    Article  Google Scholar 

  • Yang, Y., Kim, D., & Fathman, C. G. (1998). Regulation of programmed cell death following T cell activation in vivo. Int. Immunol., 10(2), 175–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P.S., Lee, P.P. & Levy, D. A Theory of Immunodominance and Adaptive Regulation. Bull Math Biol 73, 1645–1665 (2011). https://doi.org/10.1007/s11538-010-9585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9585-5

Keywords

Navigation