Skip to main content
Log in

From Plateau to Pseudo-Plateau Bursting: Making the Transition

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bursting electrical activity is ubiquitous in excitable cells such as neurons and many endocrine cells. The technique of fast/slow analysis, which takes advantage of time scale differences, is typically used to analyze the dynamics of bursting in mathematical models. Two classes of bursting oscillations that have been identified with this technique, plateau and pseudo-plateau bursting, are often observed in neurons and endocrine cells, respectively. These two types of bursting have very different properties and likely serve different functions. This latter point is supported by the divergent expression of the bursting patterns into different cell types, and raises the question of whether it is even possible for a model for one type of cell to produce bursting of the type seen in the other type without large changes to the model. Using fast/slow analysis, we show here that this is possible, and we provide a procedure for achieving this transition. This suggests that the design principles for bursting in endocrine cells are just quantitative variations of those for bursting in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Baldawi, N. F., & Abercrombie, R. F. (1995). Cytoplasmic calcium buffer capacity determined with Nitr-5 and DM-nitrophen. Cell Calcium, 17, 409–421.

    Article  Google Scholar 

  • Berlin, J. R., Bassani, J. W. M., & Bers, D. M. (1994). Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys. J., 67, 1775–1787.

    Article  Google Scholar 

  • Bertram, R., & Sherman, A. (2004). A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol., 66, 1313–1344.

    Article  MathSciNet  Google Scholar 

  • Bertram, R., & Sherman, A. (2005). Negative calcium feedback: the road from Chay–Keizer. In S. Coombes, & P. Bressloff (Eds.), The genesis of rhythm in the nervous system (pp. 19–48). New Jersey: World Scientific Press.

    Chapter  Google Scholar 

  • Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol., 57, 413–439.

    MATH  Google Scholar 

  • Chay, T., & Keizer, J. (1983). Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J., 42, 181–190.

    Article  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. Int. J. Bifur. Chaos, 10, 1171–1266.

    Article  MathSciNet  MATH  Google Scholar 

  • LeBeau, A. P., Robson, A. B., McKinnon, A. E., & Sneyd, J. (1998). Analysis of a reduced model of corticotroph action potentials. J. Theor. Biol., 192, 319–339.

    Article  Google Scholar 

  • Mansvelder, H. D., & Kits, K. S. (1998). The relation of exocytosis and rapid endocytosis to calcium entry evoked by short repetitive depolarizing pulses in rat melanotropic cells. J. Neurosci., 18, 81–92.

    Google Scholar 

  • Mennerick, S., & Matthews, G. (1996). Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron, 17, 1241–1249.

    Article  Google Scholar 

  • Prinz, A. A., Abbott, L. F., & Marde, E. (2004). The dynamic clamp comes of age. Trends Neurosci., 27, 218–224.

    Article  Google Scholar 

  • Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto, & M. Yamaguti (Eds.), Lecture notes in biomathematics : Vol. 71. Mathematical topics in population biology, morphogenesis, and neurosciences (pp. 267–281). Berlin: Springer.

    Google Scholar 

  • Roussel, C., Erneux, T., Schiffmann, S., & Gall, D. (2006). Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium, 39, 455–466.

    Article  Google Scholar 

  • Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol., 69, 992–995.

    Google Scholar 

  • Sheng, Z. H., Rettig, J., Cook, T., & Catterall, W. A. (1996). Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature, 379, 451–454.

    Article  Google Scholar 

  • Stern, J. V., Osinga, H. M., LeBeau, A., & Sherman, A. (2008). Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bull. Math. Biol., 70, 68–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Stojilkovic, S. S., Zemkova, H., & Van Goor, F. (2005). Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol. Metabol., 16, 152–159.

    Article  Google Scholar 

  • Tabak, J., Toporikova, N., Freeman, M. E., & Bertram, R. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci., 22, 211–222.

    Article  MathSciNet  Google Scholar 

  • Tsaneva-Atanasova, K., Sherman, A., Van Goor, F., & Stojilkovic, S. S. (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. J. Neurophysiol., 98, 131–144.

    Article  Google Scholar 

  • Tse, F. W., Tse, A., Hille, B., Horstmann, H., & Almers, W. (1997). Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron, 18, 121–132.

    Article  Google Scholar 

  • Van Goor, F., Li, Y.-X., & Stojilkovic, S. S. (2001a). Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J. Neurosci., 21, 5902–5915.

    Google Scholar 

  • Van Goor, F., Zivadinovic, D., Martinez-Fuentes, A. J., & Stojilkovic, S. S. (2001b). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. J. Biol. Chem., 276, 33840–33846.

    Article  Google Scholar 

  • Zhang, M., Goforth, P., Bertram, R., Sherman, A., & Satin, L. (2003). The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J., 84, 2852–2870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Tabak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teka, W., Tsaneva-Atanasova, K., Bertram, R. et al. From Plateau to Pseudo-Plateau Bursting: Making the Transition. Bull Math Biol 73, 1292–1311 (2011). https://doi.org/10.1007/s11538-010-9559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9559-7

Keywords

Navigation