Skip to main content

Advertisement

Log in

Kleptoparasitic Melees—Modelling Food Stealing Featuring Contests with Multiple Individuals

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Kleptoparasitism is the stealing of food by one animal from another. This has been modelled in various ways before, but all previous models have only allowed contests between two individuals. We investigate a model of kleptoparasitism where individuals are allowed to fight in groups of more than two, as often occurs in real populations. We find the equilibrium distribution of the population amongst various behavioural states, conditional upon the strategies played and environmental parameters, and then find evolutionarily stable challenging strategies. We find that there is always at least one ESS, but sometimes there are two or more, and discuss the circumstances when particular ESSs occur, and when there are likely to be multiple ESSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard, C. J., & Sibly, R. M. (1981). Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim. Behav., 29, 543–555.

    Article  Google Scholar 

  • Brockmann, H. J., & Barnard, C. J. (1979). Kleptoparasitism in birds. Anim. Behav., 27, 487–514.

    Article  Google Scholar 

  • Broom, M., & Ruxton, G. D. (1998). Evolutionarily stable stealing: game theory applied to kleptoparasitism. Behav. Ecol., 9, 397–403.

    Article  Google Scholar 

  • Broom, M., & Ruxton, G. D. (2003). Evolutionarily stable kleptoparasitism: consequences of different prey types. Behav. Ecol., 14, 23–33.

    Article  Google Scholar 

  • Broom, M., Luther, R. M., & Ruxton, G. D. (2004). Resistance is useless?—extensions to the game theory of kleptoparasitism. Bull. Math. Biol., 66, 1645–1658.

    Article  MathSciNet  Google Scholar 

  • Broom, M., & Rychtář, J. (2007). The evolution of a kleptoparasitic system under adaptive dynamics. J. Math. Biol., 54, 151–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Grimm, M. P., & Klinge, M. (1996). Pike and some aspects of its dependence on vegetation. In J. F. Craig (Ed.) Pike: biology and exploitation (pp. 125–126). London: Chapman and Hall.

    Google Scholar 

  • Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Can. Entomol., 91, 385–398.

    Article  Google Scholar 

  • Jeanne, R. L. (1972). Social biology of the nootropical wasp. Bull. Museum Comp. Zool., 144, 63-1-50.

    Google Scholar 

  • Kruuk, H. (1972). The spotted hyena: a study of predation and social behaviour. Chicago: University of Chicago Press.

    Google Scholar 

  • Luther, R. M., & Broom, M. (2004). Rapid convergence to an equilibrium state in kleptoparasitic populations. J. Math. Biol., 48, 325–339.

    Article  MathSciNet  MATH  Google Scholar 

  • Luther, R. M., Broom, M., & Ruxton, G. D. (2007). Is food worth fighting for? ESS’s in mixed populations of kleptoparasites and foragers. Bull. Math. Biol. 69, 1121–1146.

    Article  MathSciNet  MATH  Google Scholar 

  • Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rothschild, M., & Clay, T. (1952). Fleas, Flukes and Cuckoos. Glasgow: Collins.

    Google Scholar 

  • Ruxton, G. D., & Broom, M. (1999). Evolution of kleptoparasitism as a war of attrition. J. Evol. Biol., 12, 755–759.

    Article  Google Scholar 

  • Ruxton, G. D., & Moody, A. L. (1997). The ideal free distribution with kleptoparasitism. J. Theoret. Biol., 186, 449–458.

    Article  Google Scholar 

  • Shealer, D. A., & Spendelow, J. A. (2002). Individual foraging strategies of kleptoparasitic Roseate Terns. Waterbirds, 25, 436–441.

    Article  Google Scholar 

  • Spear, L. B., Howell, S. N. G., Oedekoven, C. S., Legay, D., & Bried, J. (1999). Kleptoparasitism by brown skuas on albatrosses and giant-petrels in the Indian Ocean. The Auk, 116, 545–548.

    Google Scholar 

  • Steele, W. K., & Hockey, P. A. R. (1995). Factors influencing rate and success of intraspecific kleptoparasitism among kelp gulls. The Auk, 112, 847–859.

    Google Scholar 

  • Stillman, R. A., Goss-Custard, J. D., & Caldow, R. W. G. (1997). Modelling interference from basic foraging behaviour. J. Anim. Ecol., 66, 692–703.

    Article  Google Scholar 

  • Triplet, P., Stillman, R. A., & Goss-Custard, J. D. (1999). Prey abundance and the strength of interference in a foraging sea-bird. J. Anim. Ecol., 68, 254–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rychtář.

Additional information

The research was supported by the EPSRC grant EP/E043402/1 and the NSF grant 0634182.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broom, M., Rychtář, J. Kleptoparasitic Melees—Modelling Food Stealing Featuring Contests with Multiple Individuals. Bull Math Biol 73, 683–699 (2011). https://doi.org/10.1007/s11538-010-9546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9546-z

Keywords

Navigation