Skip to main content
Log in

Nonlinear Waves in Capillary Electrophoresis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care, and forensics. In capillary electrophoresis, the sample migrates in a microcapillary in the presence of a background electrolyte. When the ionic concentration of the sample is sufficiently high, the signal is known to exhibit features reminiscent of nonlinear waves including sharp concentration “shocks.” In this paper, we consider a simplified model consisting of a single sample ion and a background electrolyte consisting of a single coion and a counterion in the absence of any processes that might change the ionization states of the constituents. If the ionic diffusivities are assumed to be the same for all constituents the concentration of sample ion is shown to obey a one dimensional advection diffusion equation with a concentration dependent advection velocity. If the analyte concentration is sufficiently low in a suitable nondimensional sense, Burgers’ equation is recovered, and thus the time dependent problem is exactly solvable with arbitrary initial conditions. In the case of small diffusivity, either a leading edge or trailing edge shock is formed depending on the electrophoretic mobility of the sample ion relative to the background ions. Analytical formulas are presented for the shape, width, and migration velocity of the sample peak and it is shown that axial dispersion at long times may be characterized by an effective diffusivity that is exactly calculated. These results are consistent with known observations from physical and numerical simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avrin, J.D., 1988. Global existence for a model of electrophoretic separation. SIAM J. Math. Anal. 19(3), 520–527.

    Article  MathSciNet  MATH  Google Scholar 

  • Babskii, V., Zhukov, M., Yudovich, V., 1989. Mathematical Theory of Electrophoresis. Plenum, New York.

    Google Scholar 

  • Boušková, E., Presutti, C., Gebauer, P., Fanali, S., Beckers, J., Boček, P., 2004. Experimental assessment of electromigration properties of background electrolytes in capillary zone electrophoresis. Electrophoresis 25, 355–359.

    Article  Google Scholar 

  • Bullock, J., Strasters, J., Snider, J., 1995. Effect of multiple electrolyte buffers on peak symmetry, resolution, and sensitivity in capillary electrophoresis. Anal. Chem. 67, 3246–3252.

    Article  Google Scholar 

  • Camilleri, P. (Ed.), 1998. Capillary Electrophoresis, Theory & Practice. CRC Press, Boca Raton.

    Google Scholar 

  • Desiderio, C., Fanali, S., Gebauer, P., Boček, P., 1997. System peaks in capillary zone electrophoresis II. Experimental study of vacancy peaks. J. Chromatogr. A 772, 81–89.

    Article  Google Scholar 

  • Erny, G., Bergstrŏm, E., Goodall, D., 2001. Predicting peak shape in capillary electrophoresis: a generic approach to parametrizing peaks using the Haarhoff–Van Der Linde (NVL) function. Anal. Chem. 73, 4862–4872.

    Article  Google Scholar 

  • Erny, G., Bergstrŏm, E., Goodall, D., 2002. Electromigration dispersion in capillary zone electrophoresis experimental validation of use of the Haarhoff–Van Der Linde function. J. Chromatogr. A 959, 229–239.

    Article  Google Scholar 

  • Fife, P.C., 1988. Dynamics of Internal Layers and Diffusive Interfaces. SIAM, Philadelphia.

    Google Scholar 

  • Fife, P.C., Palusinski, O.A., Su, Y., 1988. Electrophoretic traveling waves. Trans. AMS 310(2), 759–780.

    MathSciNet  MATH  Google Scholar 

  • Gaš, B., 2009. Theory of electrophoresis: Fate of one equation. Electrophoresis 30, S7–S15.

    Article  Google Scholar 

  • Gebauer, P., Boček, P., 1997. System peaks in capillary zone electrophoresis I. Simple model of vacancy electrophoresis. J. Chromatogr. A 772, 73–79.

    Article  Google Scholar 

  • Ghosal, S., 2006. Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech. 38, 309–338.

    Article  MathSciNet  Google Scholar 

  • Hickman, H., 1970. The liquid junction potential—the free diffusion junction. Chem. Eng. Sci. 25, 381–398.

    Article  Google Scholar 

  • Horká, M., Šlais, K., 2000. Low-conductivity background electrolytes in capillary zone electrophoresis—myth or reality? Electrophoresis 21, 2814–2827.

    Article  Google Scholar 

  • Kohlrausch, F., 1897. Ueber Concentrations-Verschiebungen durch Electrolyse im inneren von Lösungen und Lösungsgemischen. Ann. Phys. 62, 209–239.

    Google Scholar 

  • Landers, J. (Ed.), 1996. Introduction to Capillary Electrophoresis. CRC Press, Boca Raton.

    Google Scholar 

  • Mikkers, F., 1999. Concentration distributions in capillary electrophoresis: CZE in a spreadsheet. Anal. Chem. 71, 522–533.

    Article  Google Scholar 

  • Mikkers, F., Everaerts, F., Verheggen, T.P., 1979. Concentration distributions in free zone electrophoresis. J. Chromatogr. 169, 1–10.

    Article  Google Scholar 

  • Planck, M., 1890. Ueber die Erregung von Electricität und Wärme in Electrolyten. Ann. Phys. Chem. 39, 161–186.

    Article  Google Scholar 

  • Poppe, H., 1999. System peaks and non-linearity in capillary electrophoresis and high-performance liquid chromatography. J. Chromatogr. A 831, 105–121.

    Article  Google Scholar 

  • Probstein, R., 1994. Physicochemical Hydrodynamics. Wiley, New York.

    Book  Google Scholar 

  • Robinson, R., Stokes, R., 2002. Electrolyte Solutions. Dover, Mineola.

    Google Scholar 

  • Rubinstein, I., 1990. Electro-Diffusion of Ions. SIAM, Philadelphia.

    Google Scholar 

  • Russel, W., Saville, D., Schowalter, W., 1989. Colloidal Dispersions. Cambridge University Press, Cambridge.

    Google Scholar 

  • Saville, D.A., Palusinski, O.A., 1986. Theory of electrophoretic separations. Part I: Formulation of a mathematical model. AIChE J. 32(2), 207–214.

    Article  Google Scholar 

  • Thormann, W., Caslavska, J., Breadmore, M., Mosher, R., 2009. Dynamic computer simulations of electrophoresis: Three decades of active research. Electrophoresis 30, S16–S26.

    Article  Google Scholar 

  • Weber, H., Riemann, B., 1910. Die partiellen Differential-Gleichungen der mathematischen Physik. Vieweg, Wiesbaden.

    Google Scholar 

  • Whitham, G., 1974. Linear and Nonlinear Waves. Wiley-Interscience, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Ghosal.

Additional information

Supported by the NIH under grant R01EB007596.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosal, S., Chen, Z. Nonlinear Waves in Capillary Electrophoresis. Bull. Math. Biol. 72, 2047–2066 (2010). https://doi.org/10.1007/s11538-010-9527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9527-2

Keywords

Navigation