Skip to main content
Log in

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider stochastically modeled chemical reaction systems with mass-action kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled system with mass-action kinetics admits a complex balanced equilibrium. Feinberg’s deficiency zero theorem then implies that such a distribution exists so long as the corresponding chemical network is weakly reversible and has a deficiency of zero. The main parameter of the stationary distribution for the stochastically modeled system is a complex balanced equilibrium value for the corresponding deterministically modeled system. We also generalize our main result to some non-mass-action kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.F., 2007. A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127(21), 214107.

    Article  Google Scholar 

  • Anderson, D.F., 2008a. Global asymptotic stability for a class of nonlinear chemical equations. SIAM J. Appl. Math. 68, 1464–1476.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, D.F., 2008b. Incorporating postleap checks in tau-leaping. J. Chem. Phys. 128(5), 054103.

    Article  Google Scholar 

  • Anderson, D.F., Craciun, G., 2010. Reduced reaction networks and persistence of chemical systems (in preparation).

  • Anderson, D.F., Shiu, A., 2010. The dynamics of weakly reversible population processes near facets. SIAM J. Appl. Math. 70(6), 1840–1858.

    Article  MathSciNet  Google Scholar 

  • Anderson, D.F., Ganguly, A., Kurtz, T.G., 2010. Error analysis of tau-leap simulation methods. arXiv:0909.4790 (submitted).

  • Angeli, D., De Leenheer, P., Sontag, E.D., 2007. A petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210, 598–618.

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, K., Kurtz, T.G., Popovic, L., Rempala, G., 2006. Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16(4), 1925–1961.

    Article  MathSciNet  Google Scholar 

  • Cao, Y., Gillespie, D.T., Petzold, L.R., 2006. Efficient step size selection for the tau-leaping simulation method. J.  Chem. Phys. 124, 044109.

    Article  Google Scholar 

  • Chen, H., Yao, D.D., 2001. Fundamentals of Queueing Networks, Performance, Asymptotics and Optimization, Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 46. Springer, New York.

    MATH  Google Scholar 

  • Craciun, G., Feinberg, M., 2005. Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546.

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun, G., Feinberg, M., 2006. Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph. SIAM J. Appl. Math. 66(4), 1321–1338.

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun, G., Tang, Y., Feinberg, M., 2006. Understanding bistability in complex enzyme-driven networks. Proc. Natl. Acad. Sci. USA 103(23), 8697–8702.

    Article  Google Scholar 

  • Ethier, S.N., Kurtz, T.G., 1986. Markov Processes: Characterization and Convergence. Wiley, New York.

    MATH  Google Scholar 

  • Feinberg, M., 1972. Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194.

    Article  MathSciNet  Google Scholar 

  • Feinberg, M., 1979. Lectures on chemical reaction networks. Delivered at the Mathematics Research Center, Univ. Wisc.-Madison. Available for download at http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks.

  • Feinberg, M., 1987. Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems, review article 25. Chem. Eng. Sci. 42, 2229–2268.

    Article  Google Scholar 

  • Feinberg, M., 1989. Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci. 44(9), 1819–1827.

    Article  Google Scholar 

  • Feinberg, M., 1995. Existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Gadgil, C., Lee, C.H., Othmer, H.G., 2005. A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946.

    Article  MathSciNet  Google Scholar 

  • Gibson, M.A., Bruck, J., 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 105, 1876–1889.

    Google Scholar 

  • Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361.

    Article  Google Scholar 

  • Gillespie, D.T., 2001. Approximate accelerated simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733.

    Article  Google Scholar 

  • Gunawardena, J., 2003. Chemical reaction network theory for in-silico biologists. Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf.

  • Horn, F.J.M., 1972. Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49(3), 172–186.

    Article  MathSciNet  Google Scholar 

  • Horn, F.J.M., 1973. Stability and complex balancing in mass-action systems with three complexes. Proc. R. Soc. A 334, 331–342.

    Article  MathSciNet  Google Scholar 

  • Horn, F.J.M., Jackson, R., 1972. General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116.

    Article  MathSciNet  Google Scholar 

  • Keener, J., Sneyd, J., 1998. Mathematical Physiology. Springer, New York.

    MATH  Google Scholar 

  • Kelly, F.P., 1979. Reversibility and Stochastic Networks, Wiley Series in Probability and Mathematical Statistics. Wiley, New York.

    MATH  Google Scholar 

  • Kurtz, T.G., 1972. The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978.

    Article  Google Scholar 

  • Kurtz, T.G., 1977/1978. Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Appl. 6, 223–240.

    Article  MathSciNet  Google Scholar 

  • Kurtz, T.G., 1981. Approximation of Population Processes, CBMS-NSF Reg. Conf. Series in Appl. Math., vol. 36. SIAM, Philadelphia.

    Google Scholar 

  • Kurtz, T.G., 1992. Averaging for Martingale Problems and Stochastic Approximation, Applied Stochastic Analysis, Lecture Notes in Control and Information Sciences, vol. 77, pp. 186–209. Springer, Berlin.

    Google Scholar 

  • Levine, E., Hwa, T., 2007. Stochastic fluctuations in metabolic pathways. Proc. Natl. Acad. Sci. USA 104(22), 9224–9229.

    Article  MathSciNet  MATH  Google Scholar 

  • Serfozo, R., 1999. Introduction to Stochastic Networks, Applications of Mathematics (New York), vol. 44. Springer, New York.

    MATH  Google Scholar 

  • Sontag, E.D., 2001. Structure and stability of certain chemical networks and applications to the kinetic proofreading of t-cell receptor signal transduction. IEEE Trans. Autom. Control. 46(7), 1028–1047.

    Article  MathSciNet  MATH  Google Scholar 

  • Whittle, P., 1986. Systems in Stochastic Equilibrium. Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.F., Craciun, G. & Kurtz, T.G. Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks. Bull. Math. Biol. 72, 1947–1970 (2010). https://doi.org/10.1007/s11538-010-9517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9517-4

Keywords

Navigation