Skip to main content
Log in

Development of a Quantitative Model of Pregnane X Receptor (PXR) Mediated Xenobiotic Metabolizing Enzyme Induction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The pregnane X receptor plays an integral role in the regulation of hepatic metabolism. It has been shown to regulate CYP3A4, which is the most abundant cytochrome P450 in the human liver. With its large and flexible ligand-binding domain, PXR can be activated by an enormous range of relatively small, hydrophobic, exogenous compounds. Upon activation, PXR partners with the retinoid X receptor (RXR) to form a heterodimer. The newly formed heterodimer binds to an appropriate DNA response element, causing increased transcription. This leads to an induction in the level of CYP3A4. These mechanistic steps are included into a biologically-based mathematical model. The quantitative model predicts fold level inductions of CYP3A4 mRNA and protein in response to PXR activation. Model parameter values have been taken from literature when appropriate. Unknown parameter values are estimated by optimizing the model results to published in vivo and in vitro data sets. A sensitivity analysis is performed to evaluate the model structure and identify future data needs which would be critical to revising the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aderem, A., 2005. Systems biology: Its practice and challenges. Cell 121, 511–513. doi:10.1016/j.cell.2005.04.020.

    Article  Google Scholar 

  • Allen, N.A., Calzone, L., Chen, K.C., Ciliberto, A., Ramakrishnan, N., Shaffer, C.A., Sible, J.C., Tyson, J.J., Vass, M.T., Watson, L.T., Zwolak, J.W., 2003. Modeling regulatory networks at Virginia Tech. OMICS 7, 285–299.

    Article  Google Scholar 

  • Andersen, M.E., Krewski, D., 2009. Toxicity testing in the 21st century: Bringing the vision to life. Toxicol. Sci. 107, 324–330.

    Article  Google Scholar 

  • Brown, R.P., Delp, M.D., Lindstedt, S.L., Rhomberg, L.R., Beliles, R.P., 1997. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13(4), 407–484.

    Google Scholar 

  • Carnahan, V.E., Redinbo, M.R., 2005. Structure and function of the human nuclear xenobiotic receptor PXR. Curr. Drug Metab. 6, 357–367.

    Article  Google Scholar 

  • Dai, G., He, L., Bu, P., Wan, Y.-J.Y., 2008. Pregnane X receptor is essential for normal progression of liver regeneration. Hepatology 47, 1277–1287.

    Article  Google Scholar 

  • David, J.A., 2007. Optimal Control, Estimation, and Shape Design: Analysis and Applications. PhD thesis, North Carolina State University, Raleigh, NC. http://www.lib.ncsu.edu/theses/available/etd-07262007-194726/unrestricted/etd.pdf.

  • Dotzlaw, H., Leygue, E., Watson, P., Murphy, L.C., 1999. The human orphan receptor PXR messenger RNA is expressed in both normal and neoplastic breast tissue. Clin. Cancer Res. 5, 2103–2107.

    Google Scholar 

  • Galetin, A., Burt, H., Gibbons, L., Houston, J.B., 2006. Prediction of time-dependent CYP3A4 drug-drug interactions: Impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab. Disp. 34(1), 166–175. doi:10.1124/dmd.105.006874.

    Article  Google Scholar 

  • Goodwin, B., Hodgson, E., Liddle, C., 1999. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56, 1329–1339.

    Google Scholar 

  • Handschin, C., Meyer, U.A., 2003. Induction of drug metabolism: The role of nuclear receptors. Pharmacol. Rev. 55(4), 649–673. doi:10.1124/pr.55.4.2.

    Article  Google Scholar 

  • Hargrove, J.L., 1993. Microcomputer-assisted kinetic modeling of mammailian gene expression. FASEB J. 7, 1163–1170.

    Google Scholar 

  • Jackson, D.A., Pombo, A., Iborra, F., 2000. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J. 14, 242–254.

    Google Scholar 

  • Kavlock, R.J., Ankley, G., Blancato, J., Breen, M., Conolly, R., Dix, D., Houck, K., Hubal, E., Judson, R., Rabinowitz, J., Richard, A., Setzer, R.W., Shah, I., Villeneuve, D., Weber, E., 2008. Computational toxicology—a state of the science mini review. Toxicol. Sci. 103, 14–27.

    Article  Google Scholar 

  • Knudsen, T., Kavlock, R., Shah, I., Dix, D., Judson, R., Singh, A., Lau, C., Hunter, E., 2008. The virtual embryo project (v-Embryo).

  • Kobayashi, K., Yamagami, S., Higuchi, T., Hosokawa, M., Chiba, K., 2004. Key structural features of ligands for activation of human pregnane X receptor. Drug Metab. Dispos. 32(4), 468–472.

    Article  Google Scholar 

  • Kohn, M.C., Lucier, G.W., Clark, G.C., Sewall, C., Tritscher, A.M., Portier, C.J., 1993. A mechanistic model of effects of dioxin on gene expression in the rat liver. Toxicol. Appl. Pharmacol. 120, 138–154.

    Article  Google Scholar 

  • Kohn, M.C., Walker, N.J., Kim, A.H., Portier, C.J., 2001. Physiological modeling of a proposed mechanism of enzyme inductino by TCDD. Toxicology 162, 193–208.

    Article  Google Scholar 

  • Kretschmer, X.C., Baldwin, W.S., 2005. CAR and PXR: xenosensors of endocrine disrupters? Chem. Biol. Interact. 155, 111–128.

    Article  Google Scholar 

  • Lehmann, J.M., Mckee, D.D., Watson, M.A., Willson, T.M., Moore, J.T., Kliewer, S.A., 1998. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102(5), 1016–1023.

    Article  Google Scholar 

  • Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D., Darnell, J., 2000. Molecular Cell Biology, 4th edn. Freeman, New York.

    Google Scholar 

  • Loos, U., Musch, E., Jensen, J.C., Mikus, G., Schwabe, H.K., Eichelbaum, M., 1985. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin. Wochenschr. 63, 1205–1211.

    Article  Google Scholar 

  • Moore, L.B., Parks, D.J., Jones, S.A., Bledsoe, R.K., Consler, T.G., Stimmel, J.B., Goodwin, B., Liddle, C., Blanchards, S.G., Willson, T.M., Collins, J.L., Kliewer, S.A., 2000. Orphan nuclear receptors constitutive androstane receptor and pregnane x receptor share xenobiotic and steroid ligands. J. Biol. Chem. 275(20), 15122–15127. doi:10.1074/jbc.M001215200.

    Article  Google Scholar 

  • Novak, B., Tyson, J.J., 1997. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. U.S.A. 94, 9147–9152.

    Article  Google Scholar 

  • Pascussi, J.M., Rober, A., Nguyen, M., Walrant-Debray, O., Garabedian, M., Martin, P., Pineau, T., Saric, J., Navarro, F., Maurel, P., Vilarem, M.J., 2005. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Invest. 115(1), 177–186. doi:10.1175/JCI200521867.

    Google Scholar 

  • Pirone, J.R., Elston, T.C., 2004. Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. J. Theor. Biol. 226, 111–121.

    Article  MathSciNet  Google Scholar 

  • Sheiner, L.B., Beal, S.L., 1985. Pharmacokinetic parameter estimates from several least squares procedures: Superiority of extended least squares. J. Pharmacokinet. Biopharm. 13(2), 185–201.

    Article  Google Scholar 

  • Slatter, J., Templeton, I.E., Castle, J., Kulkarni, A., Rushmore, T., Richards, K., He, Y., Dai, X., Cheng, O., 2006. Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica 36(10–11), 938–962. doi:10.1080/00498250600861728.

    Article  Google Scholar 

  • Stelling, J., Gilles, E.D., 2004. Mathematical modeling of complex regulatory networks. IEEE Trans. Nanobiosci. 3(3), 172–179. doi:10.1109/TNB.2004.833688.

    Article  Google Scholar 

  • Svecova, L., Vrzal, R., Burysek, L., Anzenbacherova, E., Cerveny, L., Grim, J., Trejtnar, F., Kunes, J., Pour, M., Staud, F., Anzenbacher, P., Dvorak, Z., Pavek, P., 2008. Azone antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab. Dispos. 36(2), 339–348. doi:10.1124/dmd.107.018341.

    Article  Google Scholar 

  • Tan, Y.-M., Butterworth, B.E., Gargas, M.L., Conolly, R.B., 2003. Biologically motivated computational modeling of chloroform cytolethality and regenerative cellular proliferation. Toxicol. Sci. 75, 192–200. doi:10.1093/toxsci/kfg152.

    Article  Google Scholar 

  • Tien, E., Negishi, M., 2006. Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica 36(10–11), 1152–1163. doi:10.1080/00498250600861827.

    Article  Google Scholar 

  • Timchalk, C., Walker, N.J., Mann, R.C., Metting, F.B., 2001. The virtual body workshop: current and future application of human biology models in environmental health research. Environ. Health Perspect. 109, 421–423.

    Article  Google Scholar 

  • Tyson, J.J., Chen, K.C., Novak, B., 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231.

    Article  Google Scholar 

  • Tyson, J.J., Novak, B., 2001. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263.

    Article  Google Scholar 

  • Urquhart, B.L., Tirona, R.G., Kim, R.B., 2007. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs. J. Clin. Pharmacol. 47, 566–578. doi:10.1177/0091270007299930.

    Article  Google Scholar 

  • Watkins, R.E., Maglich, J.M., Moore, L.B., Wisely, G.B., Noble, S.M., Davis-Searles, P.R., Lambert, M.H., Kliewer, S.A., Redinbo, M.R., 2003. A crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 42, 1430–1438.

    Article  Google Scholar 

  • Watkins, R.E., Wisely, G.B., Moore, L.B., Collins, J.L., Lambert, M.G., Williams, S.P., Willson, T.M., Kliewer, S.A., Redinbo, M.R., 2001. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292, 2329–2333.

    Article  Google Scholar 

  • Wilson, Z.E., Rostami-Hodjegan, A., Burn, J.L., Tooley, A., Boyle, J., Ellis, S.W., Tucker, G.T., 2003. Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br. J. Clin. Pharmacol. 56, 433–440.

    Article  Google Scholar 

  • Zhang, Q., Andersen, M.E., 2007. Dose response relationship in anti-stress gene regulatory networks. PLoS Comput. Biol. 3(3), e24. doi:10.1371/journal.pcbi.0030024.

    Article  MathSciNet  Google Scholar 

  • Zheng, Z., Stewart, P.S., 2002. Penetration of rifampin through staphylococcus epidermis biofilms. Antimicrob. Agents Chemoter. 46(3), 900–903. doi:10.1128/AAC.46.3.900-903.2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Luke.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luke, N.S., DeVito, M.J., Shah, I. et al. Development of a Quantitative Model of Pregnane X Receptor (PXR) Mediated Xenobiotic Metabolizing Enzyme Induction. Bull. Math. Biol. 72, 1799–1819 (2010). https://doi.org/10.1007/s11538-010-9508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9508-5

Keywords

Navigation