Skip to main content
Log in

The Dynamics of Conjunctive and Disjunctive Boolean Network Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

For many biological networks, the topology of the network constrains its dynamics. In particular, feedback loops play a crucial role. The results in this paper quantify the constraints that (unsigned) feedback loops exert on the dynamics of a class of discrete models for gene regulatory networks. Conjunctive (resp. disjunctive) Boolean networks, obtained by using only the AND (resp. OR) operator, comprise a subclass of networks that consist of canalyzing functions, used to describe many published gene regulation mechanisms. For the study of feedback loops, it is common to decompose the wiring diagram into linked components each of which is strongly connected. It is shown that for conjunctive Boolean networks with strongly connected wiring diagram, the feedback loop structure completely determines the long-term dynamics of the network. A formula is established for the precise number of limit cycles of a given length, and it is determined which limit cycle lengths can appear. For general wiring diagrams, the situation is much more complicated, as feedback loops in one strongly connected component can influence the feedback loops in other components. This paper provides a sharp lower bound and an upper bound on the number of limit cycles of a given length, in terms of properties of the partially ordered set of strongly connected components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agur, Z., Fraenkel, A.S., Klein, S.T., 1988. The number of fixed points of the majority rule. Discrete Math. 70, 295–302.

    Article  MATH  MathSciNet  Google Scholar 

  • Albert, R., Othmer, H., 2003. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18.

    Article  MathSciNet  Google Scholar 

  • Aracena, J., 2008. Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70, 1398–1409.

    Article  MATH  MathSciNet  Google Scholar 

  • Aracena, J., Demongeot, J., Goles, E., 2004. Fixed points and maximal independent sets in AND–OR networks. Discrete Appl. Math. 138, 277–288.

    Article  MATH  MathSciNet  Google Scholar 

  • Barrett, C.L., Chen, W.Y.C., Zheng, M.J., 2004. Discrete dynamical systems on graphs and boolean functions. Math. Comput. Simul. 66, 487–497.

    Article  MATH  MathSciNet  Google Scholar 

  • Berman, A., Plemmons, R.J., 1994. Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Revised reprint of the 1979 original.

    MATH  Google Scholar 

  • Brualdi, R.A., Ryser, H.J., 1991. Combinatorial Matrix Theory. Encyclopedia of Mathematics and its Applications, vol. 39. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Colón-Reyes, O., Laubenbacher, R., Pareigis, B., 2004. Boolean monomial dynamical systems. Ann. Comb. 8, 425–439.

    Article  MATH  MathSciNet  Google Scholar 

  • Cull, P., 1971. Linear analysis of switching nets. Kybernetik 8, 31–39.

    Article  MATH  Google Scholar 

  • Davidich, M.I., Bornholdt, S., 2008. Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3, e1672.

    Article  Google Scholar 

  • Elspas, B., 1959. The theory of autonomous linear sequential networks. IRE Trans. Circuit Theory, 6, 45–60.

    Google Scholar 

  • Gauzé, J., 1998. Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15.

    Article  Google Scholar 

  • Goles, E., Hernández, G., 2000. Dynamical behavior of Kauffman networks with and-or gates. J. Biol. Syst. 8, 151–175.

    Google Scholar 

  • Goles, E., Olivos, J., 1980. Periodic behaviour of generalized threshold functions. Discrete Math. 30, 187–189.

    Article  MATH  MathSciNet  Google Scholar 

  • Gummow, B., Sheys, J., Cancelli, V., Hammer, G., 2006. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol. Endocrinol. 20, 2711–2723.

    Article  Google Scholar 

  • Harris, S.E., Sawhill, B.K., Wuensche, A., Kauffman, S., 2002. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7, 23–40.

    Article  Google Scholar 

  • Hernández-Toledo, A., 2005. Linear finite dynamical systems. Commun. Algebra 33, 2977–2989.

    Article  MATH  Google Scholar 

  • Jarrah, A., Laubenbacher, R., Vastani, H. DVD: Discrete visual dynamics. World Wide Web. http://dvd.vbi.vt.edu

  • Jarrah, A., Laubenbacher, R., Vera-Licona, M.S.P., 2008. An efficient algorithm for the phase space structure of linear dynamical systems over finite fields (submitted).

  • Kauffman, S., 1969a. Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178.

    Article  Google Scholar 

  • Kauffman, S., 1969b. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467.

    Article  MathSciNet  Google Scholar 

  • Kauffman, S., 1993. Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, London.

    Google Scholar 

  • Kauffman, S., Peterson, C., Samuelsson, B., Troein, C., 2003. Random Boolean network models and the yeast transcriptional network. PNAS 100, 14796–14799.

    Article  Google Scholar 

  • Kauffman, S., Peterson, C., Samuelsson, B., Troein, C., 2004. Genetic networks with canalyzing Boolean rules are always stable. PNAS 101, 17102–17107.

    Article  Google Scholar 

  • Kwon, Y.-K., Cho, K.-H., 2007. Boolean dynamics of biological networks with multiple coupled feedback loops. Biophys. J. 92, 2975–2981.

    Article  Google Scholar 

  • Lidl, R., Niederreiter, H., 1997. Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge.

    Google Scholar 

  • Merika, M., Orkin, S., 1995. Functional synergy and physical interactions of the erythroid transcription factor gata-1 with the Krüppel family proteins sp1 and eklf. Mol. Cell. Biol. 15, 2437–2447.

    Google Scholar 

  • Nguyen, D.H., D’haeseleer, P., 2006. Deciphering principles of transcription regulation in eucaryotic genomes. Mol. Syst. Biol. 2, 2006.0012. doi:10.1038/msb4100054.

    Article  Google Scholar 

  • Nikolajewaa, S., Friedela, M., Wilhelm, T., 2007. Boolean networks with biologically relevant rules show ordered behaviorstar, open. Biosystems 90, 40–47.

    Article  Google Scholar 

  • Plahte, E., Mestl, T., Omholt, S., 1995. Feedback loops, stability and multistationarity in dynamical systems. J. Biol. Syst. 3, 409–413.

    Article  Google Scholar 

  • Raeymaekers, L., 2002. Dynamics of boolean networks controlled by biologically meaningful functions. J. Theor. Biol. 218, 331–341.

    Article  MathSciNet  Google Scholar 

  • Sachkov, V.N., Tarakanov, V.E., 2002. Combinatorics of Nonnegative Matrices. Translations of Mathematical Monographs, vol. 213. Am. Math. Soc., Providence. Translated from the 2000 Russian original by Valentin F. Kolchin.

    MATH  Google Scholar 

  • Schutter, B.D., Moor, B.D., 2000. On the sequence of consecutive powers of a matrix in a Boolean algebra. SIAM J. Matrix Anal. Appl. 21, 328–354.

    Article  Google Scholar 

  • Sontag, E., Veliz-Cuba, A., Laubenabcher, R., Jarrah, A., 2008. The effect of negative feedback loops on the dynamics of Boolean networks. Biophys. J. 9(2), 518–526. doi:10.1529/biophysj.107.125021.

    Article  Google Scholar 

  • Soule, C., 2003. Graphic requirements for multistationarity. ComPlexUs 1, 123–133.

    Article  Google Scholar 

  • Stanley, R.P., 1986. Enumerative Combinatorics I. Translations of Mathematical Monographs. Wadsworth, Belmont.

    MATH  Google Scholar 

  • Stigler, B., Veliz-Cuba, A., 2008. Network topology as a driver of bistability in the lac operon. http://arxiv.org/abs/0807.3995.

  • Thomas, R., D’Ari, R., 1990. Biological Feedback. CRC Press, Boca Raton.

    MATH  Google Scholar 

  • Thomas, R., Kaufman, M., 2001. Multistationarity, the basis of cell differentiation and memory. II. Structural conditions of multistationarity and other nontrivial behavior. Chaos 11, 170–179.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Salam Jarrah.

Additional information

This work was supported partially by NSF Grant DMS-0511441.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarrah, A.S., Laubenbacher, R. & Veliz-Cuba, A. The Dynamics of Conjunctive and Disjunctive Boolean Network Models. Bull. Math. Biol. 72, 1425–1447 (2010). https://doi.org/10.1007/s11538-010-9501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9501-z

Keywords

Navigation