Skip to main content

Advertisement

Log in

A Mathematical Model of HIV Infection: Simulating T4, T8, Macrophages, Antibody, and Virus via Specific Anti-HIV Response in the Presence of Adaptation and Tropism

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model of the host’s immune response to HIV infection is proposed. The model represents the dynamics of 13 subsets of T cells (HIV-specific and nonspecific, healthy and infected, T4 and T8 cells), infected macrophages, neutralizing antibodies, and virus. The results of simulation are in agreement with published data regarding T4 cell concentration and viral load, and exhibit the typical features of HIV infection, i.e. double viral peaks in the acute stage, sero conversion, inverted T cell ratio, establishment of set points, steady state, and decline into AIDS. This result is achieved by taking into account thymic aging, viral and infected cell stimulation of specific immune cells, background nonspecific antigens, infected cell proliferation, viral production by infected macrophages and T cells, tropism, viral, and immune adaptation. Starting from this paradigm, changes in the parameter values simulate observed differences in individual outcomes, and predict different scenarios, which can suggest new directions in therapy. In particular, large parameter changes highlight the potentially critical role of both very vigorous and extremely damped specific immune response, and of the elimination of virus release by macrophages. Finally, the time courses of virus, antibody and T cells production and removal are systematically investigated, and a comparison of T4 and T8 cell dynamics in a healthy and in a HIV infected host is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquaro, S., Bagnarelli, P., Guenci, T., De Luca, A., Clement, M., Balestra, E., Caliò, R., Perno, C.F., 2002a. Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus. J. Med. Virol. 68(4), 479–488.

    Article  Google Scholar 

  • Aquaro, S., Caliò, R., Balzarini, J., Bellocchi, M.C., Garaci, E., Perno, C.F., 2002b. Macrophages and HIV infection: Therapeutical approaches toward this strategic virus reservoir. Antivir. Res. 55(2), 209–225.

    Article  Google Scholar 

  • Azzam, R., Lal, L., Goh, S.L., Kedzierska, K., Jaworowski, A., Naim, E., Cherry, C.L., Wesselingh, S.L., Mills, J., Crowe, S.M., 2006. Adverse effects of antiretroviral drugs on HIV-1-infected and uninfected human monocyte-derived macrophages. J. Acquir. Immune Defic. Syndr. 42(1), 19–28.

    Google Scholar 

  • Bacchetti, P., Moss, A.R., 1989. Incubation period of AIDS in San Francisco. Nature 338(6212), 251–253.

    Article  Google Scholar 

  • Bajaria, S., Webb, G., Cloyd, M., Kirschner, D., 2002. Dynamics of naive and memory CD4+ T lymphocytes in HIV-1 disease progression. J. Acquir. Immune Defic. Syndr. 30, 41–58.

    Article  Google Scholar 

  • Brander, C., Suscovich, T., Lee, Y., Nguyen, P.T., O’Connor, P., Seebach, J., Jones, N.G., van Gorder, M., Crooks, E.T., Moore, P.L., Richman, D., Robinson, J., Crooks, J.A., Franti, M., Schülke, N., Binley, J.M., 2005. Characterizing anti-HIV monoclonal antibodies and immune sera by defining the mechanism of neutralization. Hum. Antib. 14(3–4), 101–113.

    Google Scholar 

  • Chun, T.W., Engel, D., Berrey, M.M., Shea, T., Corey, L., Fauci, A.S., 1998. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 95(15), 8869–8873.

    Article  Google Scholar 

  • Coleman, R., Lombard, M., Sicard, R., 1992. Fundamental Immunology, 2nd edn. Wm. C Brown, Dubuque.

    Google Scholar 

  • Collins, K.L., Chen, B.K., Kalams, S.A., Walker, B.D., Baltimore, D., 1998. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401.

    Article  Google Scholar 

  • Connor, R.I., Sheridan, K.E., Ceradini, D., Choe, S., Landau, N.R., 1997. Change in coreceptor use correlates with disease progression in HIV-1 infected individuals. J. Exp. Med. 185(4), 621–628.

    Article  Google Scholar 

  • Crowe, S.M., McGrath, M.S., Elbeik, T., Kirihara, J., Mills, J., 1989. Comparative assessment of antiretrovirals in human monocyte-macrophages and lymphoid cell lines acutely and chronically infected with the human immunodeficiency virus. J. Med. Virol. 29(3), 176–180.

    Article  Google Scholar 

  • Daar, E.S., Moudgi, L.T., Meyer, R.D., Ho, D.D., 1991. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 324(14), 961–964.

    Article  Google Scholar 

  • Dimitrov, D.S., Xiao, X., Chabot, D., Broder, C.C., 1998. HIV coreceptors. J. Membr. Biol. 166, 75–90.

    Article  Google Scholar 

  • Edelstein-Keshet, L., 1988. Mathematical Models in Biology. McGraw-Hill, Boston.

    MATH  Google Scholar 

  • Fauci, A., 2003. HIV and AIDS: 20 years of science. Nat. Med. 9(7), 839–843.

    Article  Google Scholar 

  • Fujiwara, M., Takiguchi, M., 2007. HIV-1-specific CTLs effectively suppress replication of HIV-1 in HIV-1-infected macrophages. Blood 109(11), 4832–4838.

    Article  Google Scholar 

  • Gorry, P., Churchill, M., Crowe, S.M., Cunningham, A.L., Gabuzda, D., 2005. Pathogenesis of macrophage tropic HIV-1. Curr. HIV Res. 3(1), 53–60.

    Article  Google Scholar 

  • Greenberg, M.E., Bronson, S., Lock, M., Neumann, M., Pavlakis, G.N., Skowronski, J., 1997. Colocalization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J. 16, 6964–6976.

    Article  Google Scholar 

  • Grossman, Z., Meier-Schellersheim, Sousa, A., Rui, M., Paul, V.W., 2002. CD4+ T-cell depletion in HIV infection: Are we closer to understanding the cause?. Nat. Med. 8(4), 319–323. Commentary.

    Article  Google Scholar 

  • Hare, C.B., 2006. Clinical Overview of HIV Disease. HIV InSite Knowledge Base Chapter. University of California San Francisco. http://hivinsite.ucsf.edu/InSitepage=kb-03-01-01.

  • Harrington, L., Janowski, K., Oliver, J., Zajac, A., Weaver, C., 2008. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452, 356–360.

    Article  Google Scholar 

  • Hattori, T., Komoda, H., Pahwa, S., Tateyama, M., Zhang, X., Xu, Y., Oguma, S., Tamamura, H., Fujii, N., Fukutake, K., Uchiyama, T., 1998. Decline of anti-DP107 antibody associated with clinical progression. AIDS 12(12), 1557–1559.

    Article  Google Scholar 

  • Hatzakis, A., Touloumi, G. et al., 2000. Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 355, 9204.

    Article  Google Scholar 

  • Hellerstein, M., Hanley, M.B., Cesar, S., Siler, S., Papageorgopoulos, C., Wieder, E., Schmidt, D., Hoh, R., Nesse, R., Macallan, D., Deeks, S., McCune, J.M., 1999. Directly measured kinetics in circulating T lymphocytes in normal and HIV-1-infected humans. Nat. Med. 5, 83–88.

    Article  Google Scholar 

  • Ho, D.D., 1996. Viral counts in HIV infection. Science 272, 1124–1125.

    Article  Google Scholar 

  • Ho, D.D., 1997. Dynamics of HIV-1 replication in vivo. Clin. Invest. 90(11), 2565–2567.

    Google Scholar 

  • Ho, D.D., Neumann, U., Perelson, A., Chen, W., Leonard, J., Markowits, M., 1995. Rapid turnover of plasma virons and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.

    Article  Google Scholar 

  • Igarshi, T., et al., 2001. Macrophages are the principal reservoir and sustain high virus loads in Rhesus macaques following the depletion of CD4+ T cells by a highly pathogenic SHIV: Implications for HIV-1 infections of man. Proc. Natl. Acad. Sci. 98, 658–663.

    Article  Google Scholar 

  • Janeway, C., Travers, P., Walport, M., 1996. Immuno Biology, 3rd edn. Elsevier Science Ltd/Garland Publishing, Amsterdam.

    Google Scholar 

  • Janeway, C., Travers, P., Walport, M., Capra, J.D., 1999. Immuno Biology, 4th edn. Elsevier Science Ltd/Garland Publishing, Amsterdam.

    Google Scholar 

  • Jones, L.E., Perelson, A.S., 2005. Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART. Bull. Math. Biol. 67, 1227–1251.

    Article  MathSciNet  Google Scholar 

  • Kaneko, H., Neoh, L.P., Takeda, N., Akimoto, H., Hishikawa, T., Hashimoto, H., Hirose, S., Karaki, S., Takiguchi, M., Nakauchi, H., Kaneko, Y., Yamamoto, N., Sekigawa, I., 1997. Human immunodeficiency virus type 2 envelope glycoprotein binds to CD8 as well as to CD4 molecules on human T cells. J. Virol. 71(11), 8918–8922.

    Google Scholar 

  • Kim, H., Perelson, A., 2006. Viral and latent reservoir persistence in HIV-1 infected patients on therapy. PLoS Comput. Biol. 2(10, e135), 1235–1247.

    Article  Google Scholar 

  • Kirschner, D.E., Perelson, A., 1995. A model for the immune system response to HIV: AZT treatment studies. In: Mathematical Population Dynamics: Analysis of Heterogeneity, Theory of Epidemics, vol. 1, pp. 295–310. Wuerz Publishing Ltd., Winnipeg.

    Google Scholar 

  • Kirschner, D.E., Webb, G.F., 1996. A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58, 367–391.

    Article  MATH  Google Scholar 

  • Kitchen, G., Uittenbogaart, C.H., Zack, J., 1997. Mechanism of human immunodefifiency virus type localization in CD4-negative thymocytes: Differentiation from a CD4-positive precursor allow productive infection. J. Virol. 8, 5713–5722.

    Google Scholar 

  • Kolchinsky, P., Mirzabekov, T., Furan, M., Kiprilov, E., Cayabyab, M., Mooney, L.J., Choe, H., Sodroski, J., 1999. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4 independent replication. J. Virol. 73(10), 8120–8126.

    Google Scholar 

  • Koup, R.A., Safrit, J.T., Cao, Y., Andrews, C.A., McLeod, G., Borkowsky, W., Farthing, C., Ho, D.D., 1994. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68(7), 4650–4655.

    Google Scholar 

  • Kuby, J., 1997. Immunology, 3rd edn. W.H. Freeman and Co., New York.

    Google Scholar 

  • Lee, S., Goldstein, H., Baseler, M., Adelsberger, J., Golding, H., 1997. Human immunodeficiency virus type 1 infection of mature CD3hiCD8+ thymocytes. J. Virol. 71(9), 6671–6676.

    Google Scholar 

  • Mugwagwa, T., Witten, G., 2006. Coreceptor switching in HIV-1 subtype B and subtype C. Bull. Math. Biol. 68, 55–77.

    Google Scholar 

  • Nishimura, Y., Igarashi, T., Haigwood, N., Sadjadpour, R., Plishka, R.J., Buckler-White, A., et al., 2002. Determination of a statistically valid neutralization titer in plasma that confers protection against simian-human immunodeficiency virus challenge following passive transfer of high-titered neutralizing antibodies. J. Virol. 76, 2123–2130.

    Article  Google Scholar 

  • Pantaleo, G., Graziosi, C., Fauci, A.S., 1993. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328, 327–335.

    Article  Google Scholar 

  • Perelson, A.S., Nelson, P., 1999. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A.S., Kirschner, D.E., DeBoer, R., 1993. The dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81–125.

    Article  MATH  Google Scholar 

  • Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., 1996. HIV-1 dynamics in vivo: viron clearance rate, infected cell life-span, and viral generation time. Science 271(5255), 1582–1586.

    Article  Google Scholar 

  • Piatak, M., Saag, M.S., Yang, L.C., Clark, S.J., Kappes, J.C., Luk, K.C., Hahn, B.H., Shaw, G.M., Lifson, J.D., 1993. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259(5102), 1749–1754.

    Article  Google Scholar 

  • Pilcher, C.D., Price, M.A., Hoffman, I., 2004. Frequent detection of acute primary HIV infection in men in Malawi. AIDS 18, 517–524.

    Article  Google Scholar 

  • Poveda, E., Briz, V., Quiñones-Mateu, M., Soriano, V., 2006. HIV tropism: Diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS 20(10), 1359–1367.

    Article  Google Scholar 

  • Richman, D.D., Wrin, T., Little, S.J., Petropoulos, C.J., 2003. Rapid evolution of the neutralizing antibody response to HIV type I infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149.

    Article  Google Scholar 

  • Robertson, D.L., Hahn, B.H., Sharp, P.M., 1995. Recombination in AIDS viruses. J. Mol. Evol. 40(3), 249–259.

    Article  Google Scholar 

  • Roos, M.T., de Leeuw, N.A., Claessen, F.A., Huisman, H.G., Kootstra, N.A., Meyaard, L., Schellekens, P.T., Schuitemaker, H., Miedema, F., 1994. Viro-immunological studies in acute HIV-1 infection. AIDS 8(11), 1533–1538.

    Article  Google Scholar 

  • Rouzioux, C., 2001. Early HIV-1 DNA level predicts disease progression and death independently of HIV-RNA level and CD+4 cell count. Oral Presentation: The 1st. IAS Conference on HIV Pathogenesis and Treatment: Abstract # 23.

  • Sachsenberg, N., Perelson, A.S., Yerly, S., 1998. Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection in healthy individuals as measured by Ki-67 antigen. J. Exp. Med. 187, 1295–1303.

    Article  Google Scholar 

  • Saha, K., Zhang, J., Gupta, A., Dave, R., Yimen, M., Zerhouni, B., 2001. Isolation of primary HIV-1 that target CD8+ T lymphocytes using CD8 as a receptor. Nat. Med. 7, 65–72.

    Article  Google Scholar 

  • Scamurra, R., Mille, D., Dahl, L., Abrahamsen, M., Kapur, V., Wahl, S., Milner, E., Janoff, E., 2000. Impact of HIV-1 infection on VH3 gene repertoire of naive human B cells. J. Immunol. 164, 5482–5491.

    Google Scholar 

  • Seppa, N., 2000. AIDS vaccine tests well in monkeys. Sci. News 158, 260.

    Article  Google Scholar 

  • Shankarappa, R., Margolick, J.B., Gange, S.J., Rodrigo, A.G., Upchurch, D., Farzadegan, H., Gupta, P., Rinaldo, R., Learn, G.H., He, X., Huang, X.L., Mullins, J.I., 1999. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J. Virol. 73(12), 10489–10502.

    Google Scholar 

  • Siliciano, J.D., Siliciano, R.F., 2005. Enhanced culture assay for detection and quantization of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol. Biol. 304, 3–15.

    Google Scholar 

  • Stafford, M., Cao, Y., Ho, D., Corey, L., Mackall, C., Gress, R., Perelson, A., 2000. Modeling plasma virus concentration and CD4+ T cell kinetics during primary HIV infection. J. Theor. Biol. 203(3), 285–301.

    Article  Google Scholar 

  • Stiegler, G., Armbruster, C., Vcelar, B., Stoiber, H., Kunert, R., Michael, N.L., et al., 2001. Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in asymptomatic HIV-1-infected humans: A phase I evaluation. AIDS 16, 2019–2025.

    Article  Google Scholar 

  • Swann, S.A., Williams, M., Story, C.M., Bobbitt, K.R., Fleis, R., Collins, K.L., 2001. HIV-1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3-kinase-dependent pathway. Virology 282, 267–277.

    Article  Google Scholar 

  • Swiggard, W.J., Baytop, C., Yu, J.J., Dai, J., Li, C., Schretzenmair, R., Theodosopoulos, T., O’Doherty, U., 2005. Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J. Virol. 79(22), 14179–14188.

    Article  Google Scholar 

  • Tizard, I., 1992. Immunology, An Introduction. 3rd edn. Saunders College Publishing (Harcourt Brace Jovanovich), Fort Worth Texas.

    Google Scholar 

  • Tran, M.M., 1999. Mathematical model of HIV in vivo. Masters Thesis, New Jersey City University [unpublished].

  • Tripathi, P., Agrawal, S., 2007. The role of human leukocyte antigen E and G in HIV Infection. AIDS 21(11), 1395–1404.

    Article  Google Scholar 

  • Tsai, W.P., Conley, S.R., Kung, H.F., Garrity, R.R., Nara, P.L., 1996. Preliminary in vitro growth cycle and transmission studies of HIV-1 in an autologous primary cell assay of blood-derived macrophages and peripheral blood mononuclear cells. Virology 226(2), 205–216.

    Article  Google Scholar 

  • Walker, B.D., Scadden, D.T., 2000. CTL recognition of cells latently infected with Kaposi’s sarcoma-associated herpes virus. J. Immunol. 165(4), 2077–2083.

    Google Scholar 

  • Yamamoto, N., Ueda, M., Benson, C.E., 2007. Treatment of HIV- infected parients with Ge protein-derived macrophage activating factor (GeMAF) eradicates HIV-infection. In: Proc. 13 Int. Cong. Immunol. Italy: Medimond, Bolona, pp. 35–38.

  • Yamamoto, N., Ushijima, N., Koga, Y., 2009. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF). J. Med. Virol. 81, 16–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freda Wasserstein-Robbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserstein-Robbins, F. A Mathematical Model of HIV Infection: Simulating T4, T8, Macrophages, Antibody, and Virus via Specific Anti-HIV Response in the Presence of Adaptation and Tropism. Bull. Math. Biol. 72, 1208–1253 (2010). https://doi.org/10.1007/s11538-009-9488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9488-5

Keywords

Navigation