Skip to main content
Log in

Dynamics of Notch Activity in a Model of Interacting Signaling Pathways

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Networks of interacting signaling pathways are formulated with systems of reaction-diffusion (RD) equations. We show that weak interactions between signaling pathways have negligible effects on formation of spatial patterns of signaling molecules. In particular, a weak interaction between Retinoic Acid (RA) and Notch signaling pathways does not change dynamics of Notch activity in the spatial domain. Conversely, large interactions of signaling pathways can influence effects of each signaling pathway. When the RD system is largely perturbed by RA-Notch interactions, new spatial patterns of Notch activity are obtained. Moreover, analysis of the perturbed Homogeneous System (HS) indicates that the system admits bifurcating periodic orbits near a Hopf bifurcation point. Starting from a neighborhood of the Hopf bifurcation, oscillatory standing waves of Notch activity are numerically observed. This is of particular interest since recent laboratory experiments confirm oscillatory dynamics of Notch activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed, E.H., 1988. A simple proof of stability on the center manifold for Hopf bifurcation. SIAM Rev. 30(3), 487–491.

    Article  MathSciNet  Google Scholar 

  • Al-Omari, J.F.M., Gourley, S.A., 2003. Stability and traveling fronts in Lotka-Volterra competition models with stage structure. SIAM J. Appl. Math. 63, 2063–2086.

    Article  MATH  MathSciNet  Google Scholar 

  • Andersen, S.S., Bi, G., 2000. Axon formation: a molecular model for the generation of neuronal polarity. BioEssays 22, 172–179.

    Article  Google Scholar 

  • Aragon, J.L., Torres, M., Gil, D., Barrio, R.A., Maini, P.K., 2002. Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913.

    Article  MathSciNet  Google Scholar 

  • Arnold, V.I., 1973. Ordinary Differential Equations. MIT Press, Cambridge.

    MATH  Google Scholar 

  • Aulehla, A., Pourquié, O., 2008. Oscillating signaling pathways during embryonic development. Curr. Opin. Cell Biol. 20(6), 632–637.

    Article  Google Scholar 

  • Bani-Yaghoub, M., Amundsen, D.E., 2006. Turing-type instabilities in a mathematical model of Notch and Retinoic Acid pathways. WSEAS Trans. Biol. Biomed. 3(2), 89–96.

    Google Scholar 

  • Bani-Yaghoub, M., Amundsen, D.E., 2008. Study and simulation of reaction-diffusion systems affected by interacting signaling pathways. Acta Biotheoretica 56(4), 315–328.

    Article  Google Scholar 

  • Barrio, R.A., Varea, C., Aragon, J.L., 1999. A two-dimensional numerical study of spatial pattern formation in interacting systems. Bull. Math. Biol. 61, 483–505.

    Article  Google Scholar 

  • Benson, D.L., Maini, P.K., Sherratt, J.A., 1998. Unravelling the Turing bifurcation using spatially varying diffusion coefficients. J. Math. Biol. 37, 381–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Blokzijl, A., Dahlqvist, C., Reissmann, E., et al., 2003. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163(4), 723–728.

    Article  Google Scholar 

  • Carr, J., 1981. Application of Center Manifold Theory. Springer, New York.

    Google Scholar 

  • Clagett-Dame, M., McNeill, E.M., Muley, P.D., 2006. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J. Neurobiol. 66(7), 739–756.

    Article  Google Scholar 

  • Collier, J.R., Monk, N.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signaling. J. Theor. Biol. 183, 429–446.

    Article  Google Scholar 

  • Cummings, F.W., 2000. A model of pattern formation based on Signaling pathway. J. Theor. Biol. 207, 107–116.

    Article  Google Scholar 

  • Cummings, F.W., 2004. A model of morphogenesis. Physica A 339, 531–547.

    Article  MathSciNet  Google Scholar 

  • de Joussineau, C., Soule, J., Martin, M., et al., 2003. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559.

    Article  Google Scholar 

  • de Strooper, B., Annaert, W., 2001. Where Notch and Wnt signaling meet: The presenilin hub. J. Cell Biol. 152(4), F17–F20.

    Article  Google Scholar 

  • Drazin, P.G., 1992. Nonlinear Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Eisner, J., Kucera, M., 2000. Bifurcation of Solutions to Reaction–Diffusion Systems with Jumping Nonlinearities, book chapter, Applied Nonlinear Analysis, Springer US.

  • Ermentrout, G.B., 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Franklin, J.L., Berechid, B.E., Cutting, F.B., et al., 1999. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 9, 1448–1457.

    Article  Google Scholar 

  • Faria, T., Huang, W., Wu, J., 2006. Traveling waves for delayed reaction–diffusion equations with global response. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 462(2065), 229–261.

    Article  MATH  MathSciNet  Google Scholar 

  • Golubitsky, M., Knobloch, E., Stewart, I., 2000. Target patterns and spirals in planar reaction–diffusion systems. J. Nonlinear Sci. 10, 333–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York.

    MATH  Google Scholar 

  • Hagan, P.S., 1981. Target patterns in reaction–diffusion systems. Adv. Appl. Math. 2, 400–416.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, J.M., 1981. On the solution of reaction–diffusion equations. IMA J. Appl. Math. 272, 177–194.

    Article  Google Scholar 

  • Hartman, P., 1964. Ordinary Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  • Hopf, E., 1942. Abzweigung einer periodischen Loesung von einer stationaeren Loesung eines Differential systems. Ber. Math.-Phys. Kl. Saechs Adad Wiss. Leipz. 94, 1.

    Google Scholar 

  • Hunter, K., Maden, M., Summerbell, D., et al., 1991. Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Proc. Natl. Acad. Sci. 88, 3666–3670.

    Article  Google Scholar 

  • Jost, J., 2007. Theorem 5.2.1 in Partial Differential Equations, 2nd edn. Springer, New York.

    Google Scholar 

  • Jun, T., Gjoerup, O., Roberts, T., 1999. Tangled webs: evidence of cross-talk between c-Raf-1 and Akt. Sci. STKE. doi:10.1126/stke.1999.13.pe1.

  • Kageyama, R., Masamizu, Y., Niwa, Y., 2008. Oscillator mechanism of notch pathway in the segmentation clock. Dev. Dyn. 236(6), 1403–1409.

    Article  Google Scholar 

  • Kopell, N., Howard, L.N., 1973. Plane wave solutions to reaction–diffusion equations. Stud. Appl. Math. 42, 291–328.

    MathSciNet  Google Scholar 

  • Larrson, S., Thomee, V., 2003. Partial Differential Equations with Numerical Methods. Springer, Berlin.

    Google Scholar 

  • McLean, D.R., van Ooyen, A., Graham, B.P., 2004. Continuum model for tubulin-driven neurite elongation. Neurocomput. 58–60, 511–516.

    Article  Google Scholar 

  • Murray, J.D., 2003a. Mathematical Biology I. Springer, New York.

    Google Scholar 

  • Murray, J.D., 2003b. Mathematical Biology II. Springer, New York.

    Google Scholar 

  • Nagao, M., Sugimori, M., Nakafuku, M., 2007. Cross Talk between Notch and Growth Factor/Cytokine signaling pathways in neural stem cells. Mol. Cell. Biol. 27(11), 3982–3994.

    Article  Google Scholar 

  • Nagorcka, B.N., Mooney, J.R., 1992. From stripes to spots: prepatterns which can be produced in the skin by reaction–diffusion systems. IMA J. Math. Appl. Med. Biol. 9, 249–267.

    Article  MATH  Google Scholar 

  • Napoli, J.L., 1996. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin. Immunol. Immunopathol. 80(3), S52–S62.

    Article  Google Scholar 

  • Needham, D.J., 1992. A formal theory concerning the generation and propagation of traveling wave-fronts in reaction diffusion equations. Q. J. Mech. Appl. Math. 45(3), 469–498.

    Article  MATH  MathSciNet  Google Scholar 

  • Ockendon, J., Howison, S., Lacey, A., Movchan, A., 2003. Applied Partial Differential Equations, revised edn., pp. 271–287. Oxford University Press, London.

    MATH  Google Scholar 

  • Ouchi, N., Kobayashi, H., Kihara, S., et al., 2004. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279(2), 1304–1309.

    Article  Google Scholar 

  • Perko, L., 2001. Differential Equations and Dynamical Systems, 3rd edn. Springer, New York.

    MATH  Google Scholar 

  • Rauch, E.M., Millonas, M.M., 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401–407.

    Article  MathSciNet  Google Scholar 

  • Ruelle, D., Takens, F., 1971. On the nature of turbulence. Commun. Math. Phys. 20, 167.

    Article  MATH  MathSciNet  Google Scholar 

  • Sakamoto, K., Suzuki, H., 2004. Spherically symmetric internal layers for activator-inhibitor systems: I. Existence by a Lyapunov-Schmidt reduction. J. Differ. Equ. 204, 56–92.

    MATH  MathSciNet  Google Scholar 

  • Scheel, A., 1998. Bifurcation to spiral waves in reaction-diffusion systems. SIAM J. Math. Anal. Arch. 29(6), 1399–1418.

    Article  MATH  MathSciNet  Google Scholar 

  • Shimojo, H., Ohtsuka, T., Kageyama, R., 2008. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58(1), 52–64.

    Article  Google Scholar 

  • Sternberg, P.W., 1993. Falling off the knife edge. Curr. Biol. 3, 763–765.

    Article  Google Scholar 

  • Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B 237, 37–72.

    Article  Google Scholar 

  • Webb, S.D., Owen, M.R., 2004. Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning. J. Theor. Biol. 230, 99–117.

    Article  MathSciNet  Google Scholar 

  • Yang, Y.L., Liao, J.C., 2005. Determination of functional interactions among signaling pathways in Escherichia coli K-12. Metab. Eng. 7(4), 280–290.

    Article  MathSciNet  Google Scholar 

  • Zhabotinsky, A.M., Zaikin, A.N., 1971. In: Sel’kov, E.E. (Ed.), Oscillating Processes in Biological and Chemical Systems II, p. 279. Nauka, Puschino.

    Google Scholar 

  • Zhu, M., Murray, J.D., 1995. Parameter domains for generating spatial patterns: a comparison of reaction-diffusion and cell-chemotaxis models. Int. J. Bifurc. Chaos 5, 1503–1524.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Bani-Yaghoub.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (AVI 9.1 MB)

Below is the link to the electronic supplementary material. (AVI 8.85 MB)

Below is the link to the electronic supplementary material. (AVI 13.9 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bani-Yaghoub, M., Amundsen, D.E. Dynamics of Notch Activity in a Model of Interacting Signaling Pathways. Bull. Math. Biol. 72, 780–804 (2010). https://doi.org/10.1007/s11538-009-9469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9469-8

Navigation