Skip to main content
Log in

A Model of Hydrodynamic Interaction Between Swimming Bacteria

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the dynamics and interaction of two swimming bacteria, modeled by self-propelled dumbbell-type structures. We focus on alignment dynamics of a coplanar pair of elongated swimmers, which propel themselves either by “pushing” or “pulling” both in three- and quasi-two-dimensional geometries of space. We derive asymptotic expressions for the dynamics of the pair, which complemented by numerical experiments, indicate that the tendency of bacteria to swim in or swim off depends strongly on the position of the propulsion force. In particular, we observe that positioning of the effective propulsion force inside the dumbbell results in qualitative agreement with the dynamics observed in experiments, such as mutual alignment of converging bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranson, I., Tsimring, L., 2005. Pattern formation of microtubules and motors: Inelastic interaction of polar rods. Phys. Rev. E 71, 050901(R).

    Article  Google Scholar 

  • Aranson, I., Sokolov, A., Goldstein, R., Kessler, J., 2007. Model for dynamical coherence in thin films of self-propelled microorganisms. Phys. Rev. E 75, 040901.

    Article  Google Scholar 

  • Brennen, C., Winet, H., 1977. Fluid mechanics of propulsion by cilia and flagella. Ann. Rev. Fluid Mech. 9, 339–398.

    Article  Google Scholar 

  • Cisneros, L.H., Cortez, R., Dombrowski, C., Goldstein, R.E., Kessler, J.O., 2007. Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations. Exp. Fluids 43, 737–753.

    Article  Google Scholar 

  • Diamant, H., Cui, B., Lin, B., Rice, S., 2005. Hydrodynamic interaction in quasi-two-dimensional suspensions, J. Phys., Condens. Matter.

  • DiLuzio, W., Turner, L., Mayer, M., Garstecki, P., Weibel, D., Berg, H., Whitesides, G., 2005. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274.

    Article  Google Scholar 

  • Doi, M., Edwards, S.F., 1986. The Theory of Polymer Dynamics. Clarendon, Oxford.

    Google Scholar 

  • Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O., 2004. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93(9), 098103:1–4.

    Article  Google Scholar 

  • Grégoire, G., Chaté, H., 2004. Onset of collective and cohesive motion. Phys. Rev. Lett. 75, 1226–1229.

    Google Scholar 

  • Gyrya, V., Aranson, I., Berlyand, L., Karpeev, D., 2008. A model of hydrodynamic interaction between swimming bacteria. arXiv:0805.3182v2, pp. 1–28.

  • Haines, B., Aranson, I., Berlyand, L., Karpeev, D., 2008. Effective viscosity of dilute bacterial suspensions: A two-dimensional model. Preprint.

  • Hernandez-Ortiz, J., Stoltz, C., Graham, M., 2005. Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501:1–4.

    Article  Google Scholar 

  • Ishikawa, T., Pedley, T.J., 2007. The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588, 399–435.

    MATH  MathSciNet  Google Scholar 

  • Ishikawa, T., Simmonds, M.P., Pedley, T.J., 2006. Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Kessler, J., 2000. Dynamics of swimming bacteria at low and high volume fractions. Int. Conf. Differ. Eqs. 2, 1284–1287.

    Google Scholar 

  • Khatavkar, V.V., Anderson, P.D., den Toonder, J.M.J., Meijer, H.E.H., 2007. Active micromixer based on artificial cilia. Phys. Fluids 19, 083605.

    Article  Google Scholar 

  • Kim, M., Breuera, K., 2004. Enhanced diffusion due to motile bacteria. Phys. Fluids 16(9), L78–L81.

    Article  Google Scholar 

  • Kim, S., Karrila, S.J., 1991. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston.

    Google Scholar 

  • Kitsunezaki, S., Komori, R., Harumoto, T., 2007. Bioconvection and front formation of paramecium tetraurelia. Phys. Rev. E 76, 046301.

    Article  Google Scholar 

  • Lighthill, J., 1976. Flagellar hydrodynamics. SIAM Rev. 18, 161–230.

    Article  MATH  MathSciNet  Google Scholar 

  • Liron, N., Mochon, S., 1976. Stokes flow for a stokeslet between two parallel flat plates. J. Eng. Math. 10(4), 287–303.

    Article  MATH  Google Scholar 

  • Mendelson, N., Bourque, A., Wilkening, K., Watkins, J., 1999. Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets. J. Bacteriol. 181(2), 600–609.

    Google Scholar 

  • Najafi, A., Golestanian, R., 2004. Simple swimmer and low Reynolds number: Three linked spheres. Phys. Rev. E 69, 062901.

    Article  Google Scholar 

  • Nasseri, S., Phan-Thien, N., 1997. Hydrodynamic interaction between two nearby swimming micromachines. Comput. Mech. 20, 551–559.

    Article  MATH  Google Scholar 

  • Pedley, T.J., Kessler, J.O., 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Ann. Rev. Fluid Mech. 24, 313–358.

    Article  MathSciNet  Google Scholar 

  • Pooley, C., Alexander, G., Yeomans, J., 2007. Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett. 99, 228103.

    Article  Google Scholar 

  • Purcell, E., (1977). Life at low Reynolds number. Am. J. Phys. 45(3).

  • Ramia, M., Tullock, D.L., Phan-Thien, N., 1993. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755–778.

    Article  Google Scholar 

  • Riedel, I., Kruse, K., Howard, J., 2005. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303.

    Article  Google Scholar 

  • Rüffer, U., Nultsch, W., 1985. High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil. 5, 251–263.

    Article  Google Scholar 

  • Saintillan, D., Shelley, M., 2007. Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99, 058102:1–4.

    Article  Google Scholar 

  • Short, M., Solari, C., Ganguly, S., Powers, T., Kessler, J., Goldstein, R., 2006. Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc. Nat. Acad. Sci. (USA) 103, 8315–8319.

    Article  Google Scholar 

  • Simha, R., Ramaswamy, S., 2002. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89(5), 058101:1–4.

    Google Scholar 

  • Sokolov, A., Aranson, I., Kessler, J., Goldstein, R., 2007. Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102.

    Article  Google Scholar 

  • Taylor, G., 1951. Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209, 447–461.

    Article  MATH  Google Scholar 

  • Wu, X.-L., Libchaber, A., 2000. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, 3017–3020.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Gyrya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyrya, V., Aranson, I.S., Berlyand, L.V. et al. A Model of Hydrodynamic Interaction Between Swimming Bacteria. Bull. Math. Biol. 72, 148–183 (2010). https://doi.org/10.1007/s11538-009-9442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9442-6

Keywords

Navigation