Skip to main content
Log in

Impacts of Foraging Facilitation Among Predators on Predator-prey Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Whereas impacts of predator interference on predator-prey dynamics have received considerable attention, the “inverse” process—foraging facilitation among predators—have not been explored yet. Here we show, via mathematical models, that impacts of foraging facilitation on predator-prey dynamics depend on the way this process is modeled. In particular, foraging facilitation destabilizes predator-prey dynamics when it affects the encounter rate between predators and prey. By contrast, it might have a stabilizing effect if the predator handling time of prey is affected. Foraging facilitation is an Allee effect mechanism among predators and we show that for many parameters, it gives rise to a demographic Allee effect or a critical predator density in need to be crossed for predators to persist. We explore also the effects of predator interference, to make the picture “symmetric” and complete. Predator interference is shown to stabilize predator-prey dynamics once its strength is not too high, and thus corroborates results of others. On the other hand, there is a wide range of model parameters for which predator interference gives rise to three co-occurring co-existence equilibria. Such a multi-equilibrial regime is rather robust as we observe it for all the functional response types we explore. This is a previously unreported phenomenon which we show cannot occur for the Beddington–DeAngelis functional response. An interesting topic for future research thus might be to seek for general conditions on predator functional responses that would produce multiple co-existence equilibria in a predator-prey model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P.A., 1994. The fallacies of “ratio-dependent” predation. Ecology 75, 1842–1850.

    Article  Google Scholar 

  • Abrams, P.A., Ginzburg, L.R., 2000. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15, 337–341.

    Article  Google Scholar 

  • Arnqvist, G., Jones, T.M., Elgar, M.A., 2006. Sex-role reversed nuptial feeding reduces male kleptoparasitism of females in Zeus bugs (Heteroptera: Veliidae). Biol. Lett. 2, 491–493.

    Article  Google Scholar 

  • Beddington, J.R., 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol. 44, 331–340.

    Article  Google Scholar 

  • Bednarz, J.C., 1988. Cooperative hunting in Harris’ hawks (Parabuteo unicinctus). Science 239, 1525–1527.

    Article  Google Scholar 

  • Begon, M., Harper, J.L., Townsend, C.R., 1990. Ecology: Individuals, Populations and Communities (2nd edn.). Blackwell Scientific, Oxford.

    Google Scholar 

  • Berryman, A.A., 1992. The origins and evolution of predator-prey theory. Ecology 73, 1530–1535.

    Article  Google Scholar 

  • Berryman, A.A., Dennis, B., Raffa, K.F., Stenseth, N.C., 1985. Evolution of optimal group attack, with particular reference to bark beetles (Coleoptera: Scolytidae). Ecology 66, 898–903.

    Article  Google Scholar 

  • Boesch, C., 1994. Cooperative hunting in wild chimpanzees. Animal Behav. 48, 653–667.

    Article  Google Scholar 

  • Briggs, C.J., Hoopes, M.F., 2004. Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor. Popul. Biol. 65, 299–315.

    Article  MATH  Google Scholar 

  • Clayton, D.A., 1978. Socially facilitated behavior. Q. Rev. Biol. 53, 373–392.

    Article  Google Scholar 

  • Cosner, C., DeAngelis, D., Ault, J.S., Olson, D.B., 1999. Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75.

    Article  MATH  Google Scholar 

  • Courchamp, F., Macdonald, D.W., 2001. Crucial importance of pack size in the African wild dog Lycaon pictus. Animal Conserv. 4, 169–174.

    Article  Google Scholar 

  • Courchamp, F., Berec, L., Gascoigne, J., 2008. Allee Effects in Ecology and Conservation. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Crowley, P.H., 1981. Dispersal and the stability of predator-prey interactions. Am. Natur. 118, 673–701.

    Article  MathSciNet  Google Scholar 

  • Dawson, J.W., Mannan, R.W., 1991. The role of territoriality in the social organization of Harris’ hawks. The Auk 108, 661–672.

    Google Scholar 

  • de Roos, A.M., McCauley, E., Wilson, W.G., 1991. Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond. B 246, 117–122.

    Article  Google Scholar 

  • DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V., 1975. A model for trophic interaction. Ecology 56, 881–892.

    Article  Google Scholar 

  • Denno, R.F., Benrey, B., 1997. Aggregation facilitates larval growth in the neotropical nymphalid butterfly Chlosyne janais. Ecol. Entomol. 22, 133–141.

    Article  Google Scholar 

  • Dhooge, A., Govaerts, W., Kuznetsov, Y.A., 2003. Matcont: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Gardner, J.L., 2004. Winter flocking behaviour of speckled warblers and the Allee effect. Biol. Conserv. 118, 195–204.

    Article  Google Scholar 

  • Gascoigne, J.C., Lipcius, R.N., 2004. Allee effects driven by predation. J. Appl. Ecol. 41, 801–810.

    Article  Google Scholar 

  • Grünbaum, D., Veit, R.R., 2003. Black-browed albatrosses foraging on Antarctic krill: density-dependence through local enhancement? Ecology 84, 3265–3275.

    Article  Google Scholar 

  • Hassell, M.P., Lawton, J.H., Beddington, J.R., 1976. The components of arthropod predation. 1. The prey death rate. J. Animal Ecol. 45, 135–164.

    Article  Google Scholar 

  • Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27, 343–383.

    Google Scholar 

  • Huisman, G., DeBoer, R.J., 1997. A formal derivation of the “Beddington” functional response. J. Theor. Biol. 185, 389–400.

    Article  Google Scholar 

  • Jeschke, J.M., Kopp, M., Tollrian, R., 2002. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112.

    Google Scholar 

  • Jost, C., 1998. Comparing predator-prey models qualitatively and quantitatively with ecological time-series data. Dissertation, Institut National Agronomique, Paris-Grignon, France.

  • Jost, C., Arino, O., Arditi, R., 1999. About deterministic extinction in ratio-dependent predator-prey models. Bull. Math. Biol. 61, 19–32.

    Article  Google Scholar 

  • Kenward, R.E., 1978. Hawks and doves: factors affecting success and selection in goshawk attacks on woodpigeons. J. Animal Ecol. 47, 449–460.

    Article  Google Scholar 

  • Kim, K.W., Krafft, B., Choe, J.C., 2005a. Cooperative prey capture by young subsocial spiders. I. Functional value. Behav. Ecol. Sociobiol. 59, 92–100.

    Article  Google Scholar 

  • Kim, K.W., Krafft, B., Choe, J.C., 2005b. Cooperative prey capture by young subsocial spiders. II. Behavioral mechanism. Behav. Ecol. Sociobiol. 59, 101–107.

    Article  Google Scholar 

  • Krause, J., Ruxton, G.D., 2002. Living in Groups. Oxford University Press, Oxford.

    Google Scholar 

  • Krebs, C.J., 2001. Ecology (5th edn.). Benjamin Cummings, San Francisco.

    Google Scholar 

  • Křivan, V., 2007. The Lotka–Volterra predator-prey model with foraging-predation risk trade-offs. Am. Natur. 170, 771–782.

    Article  Google Scholar 

  • Kuang, Y., Beretta, E., 1998. Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406.

    Article  MATH  MathSciNet  Google Scholar 

  • Marsh, A.C., Ribbink, A.J., 1986. Feeding schools among Lake Malawi cichlid fishes. Environ. Biol. Fishes 15, 75–79.

    Article  Google Scholar 

  • Mchich, R., Auger, P., Poggiale, J.-C., 2007. Effect of predator density dependent dispersal of prey on stability of a predator-prey system. Math. Biosci. 206, 343–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Murdoch, W.W., Oaten, A., 1975. Predation and population stability. In: Macfadyen, A. (Ed.), Advances in Ecological Research, pp. 1–131. Academic Press, New York.

    Google Scholar 

  • Packer, C., Ruttan, L., 1988. The evolution of cooperative hunting. Am. Natur. 132, 159–198.

    Article  Google Scholar 

  • Partridge, B.L., Johansson, J., Kalish, J., 1983. The structure of schools of giant bluefin tuna in Cape Cod Bay. Environ. Biol. Fishes 9, 253–262.

    Article  Google Scholar 

  • Rogers, D.J., Hassell, M.P., 1974. General models for insect parasite and predator searching behaviour: interference. J. Animal Ecol. 43, 239–253.

    Article  Google Scholar 

  • Rosenzweig, M.L., 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387.

    Article  Google Scholar 

  • Ruxton, G.D., 1995. Short term refuge use and stability of predator-prey models. Theor. Popul. Biol. 47, 1–17.

    Article  MATH  Google Scholar 

  • Ruxton, G.D., Gurney, W.S.C., de Roos, A.M., 1992. Interference and generation cycles. Theor. Popul. Biol. 42, 235–253.

    Article  MATH  Google Scholar 

  • Skalski, G.T., Gilliam, J.F., 2001. Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82, 3083–3092.

    Article  Google Scholar 

  • Solomon, M.E., 1949. The natural control of animal populations. J. Animal Ecol. 18, 1–35.

    Article  Google Scholar 

  • Spradbery, J.P., 1970. Host finding by Rhyssa persuasoria (L.), an ichneumonid parasite of siricid woodwasps. Animal Behav. 18, 103–114.

    Article  Google Scholar 

  • Wilson, W.G., de Roos, A.M., McCauley, E., 1993. Spatial instabilities within the diffusive Lotka–Volterra system: individual-based simulation results. Theor. Popul. Biol. 43, 91–127.

    Article  MATH  Google Scholar 

  • Xiao, D., Ruan, S., 2001. Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 43, 268–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou, S.-R., Liu, Y.-F., Wang, G., 2005. The stability of predator-prey systems subject to the Allee effects. Theor. Popul. Biol. 67, 23–31.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luděk Berec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berec, L. Impacts of Foraging Facilitation Among Predators on Predator-prey Dynamics. Bull. Math. Biol. 72, 94–121 (2010). https://doi.org/10.1007/s11538-009-9439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9439-1

Keywords

Navigation