Skip to main content
Log in

Effects of Predator and Prey Dispersal on Success or Failure of Biological Control

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biological control, defined as the reduction of pest populations by natural enemies, is often a component of integrated pest management strategies. Augmentation of natural enemy numbers by planned releases is a common biological control method, the successes and failures of which have been extensively reviewed. The effectiveness of biological control is influenced by how populations of predators and prey (or hosts and parasitoids) disperse in patchy environments. Here, we address the question of whether such dispersal leads to beneficial or detrimental pest control outcomes by developing a simple predator-prey model with constant releases of natural enemies in a two-patch environment. Theoretical and numerical results for all possible cases indicate that population dispersal has significant effects on the persistence of pests. For some ranges of dispersal rates or parameter space, dispersal is beneficial for pest control measures but this is not so for other ranges when it is detrimental. Therefore, knowledge of pest and natural enemy dispersal is crucial for understanding the effectiveness of biological control in a patchy environment. Finally, the model is generalised for multi-patch systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarasekare, P., 2008. Spatial dynamics of Foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500.

    Article  Google Scholar 

  • Amarasekare, P., Nisbet, R.M., 2001. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158, 572–584.

    Article  Google Scholar 

  • Beverton, R.J., Holt, S.J., 1956. The theory of fishing. In: Graham, M. (Ed.), Sea Fisheries; Their Investigation in the United Kingdom, pp. 372–441. Edward Arnold, London.

    Google Scholar 

  • Collier, T., Van Steenwyk, R., 2004. A critical evaluation of augmentative biological control. Biol. Control 31, 245–256.

    Article  Google Scholar 

  • Cooke, K., Van den Driessche, P., Zou, X., 1999. Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352.

    Article  MATH  MathSciNet  Google Scholar 

  • Crowley, P.H., 1981. Dispersal and the stability of predator-prey interactions. Am. Nat. 118, 673–701.

    Article  MathSciNet  Google Scholar 

  • DeBach, P., Rosen, D., 1991. Biological Control by Natural Enemies. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dwyer, G., Hails, R., 2002. Manipulating your host: host-pathogen population dynamics, host dispersal and genetically modified baculoviruses. In: Bullock, J.M., Kenward, R.E., Hails, R. (Eds.), Dispersal Ecology, pp. 173–193. Blackwell, Oxford.

    Google Scholar 

  • Gompertz, B., 1925. On the nature of the function expressive of the law of human mortability. Philos. Trans. 115, 513–585.

    Google Scholar 

  • Greathead, D.J., 1992. Natural enemies of tropical locusts and grasshoppers: their impact and potential as biological control agents. In: Lomer, C.J., Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers, pp. 105–121. C.A.B. International, Wallingford.

    Google Scholar 

  • Hanski, I., Gilpin, M.E., 1997. Metapopulation Dynamics: Ecology, Genetics and Evolution. Academic Press, San Diego.

    MATH  Google Scholar 

  • Hassell, M.P., 1978. The Dynamics of Predator-Prey Systems. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Hassell, M.P., 2000. The Spatial and Temporal Dynamics of Host-Parasitoid Intereactions. Oxford University Press, London.

    Google Scholar 

  • Hoffmann, M.P., Frodsham, A.C., 1993. Natural Enemies of Vegetable Insect Pests. Cooperative Extension. Cornell University, Ithaca.

    Google Scholar 

  • Holling, C.S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Can. 45, 3–60.

    Google Scholar 

  • Hopper, K.R., Roush, R.T., 1993. Mate finding, dispersal, number released, and the success of biological control introductions. Ecol. Entomol. 18, 321–331.

    Article  Google Scholar 

  • Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27, 343–383.

    Google Scholar 

  • Jansen, V.A.A., Sabelis, M.W., 1992. Prey dispersal and predator persistence. Exp. Appl. Acarol. 14, 215–231.

    Article  Google Scholar 

  • Kareiva, P., 1982. Experimental and mathematical analyses of herbivore movement: quantifying the influence of plant spacing and quality on foraging discrimination. Ecol. Monogr. 52(3), 261–282.

    Article  Google Scholar 

  • Levins, R., 1970. Extinction. Ann. NY Acad. Sci. 231, 123–138.

    Article  Google Scholar 

  • Lotka, A.J., 1920. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599.

    Article  Google Scholar 

  • McDougall, S.L., Mills, N.J., 1997. Dispersal of Trichogramma platnery Nnagarkatti (Hym., Trichogrammatidae) from point-source releases in an apple orchard in California. J. Appl. Entomol. 121,205–209.

    Article  Google Scholar 

  • Neuenschwander, P., Herren, H.R., 1988. Biological Control of the Cassava Mealybug, Phenacoccus manihoti, by the Exotic Parasitoid Epidinocarsis lopezi in Africa. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 318, 319–333.

    Article  Google Scholar 

  • Nicholson, A.J., Bailey, V.A., 1935. The balance of animal populations. Part I. Proc. Zool. Soc. Lond. 3, 551–598.

    Google Scholar 

  • Parker, F.D., 1971. Management of pest populations by manipulating densities of both host and parasites through periodic releases. In: Huffaker, C.B. (Ed.), Biological Control. Plenum, New York.

    Google Scholar 

  • Pels, B., Sabelis, M.W., 1999. Local dynamics, overexploitation and predator dispersal in an acarine predator-prey system. Oikos 86, 573–583.

    Article  Google Scholar 

  • Saavedra, J.L.D., Torres, J.B., Ruiz, M.G., 1997. Dispersal and parasitism of Heliothis virescens eggs by Trichogramma pretiosum (Rriley) in cotton. J. Pest Manag. 43(2), 169–171.

    Article  Google Scholar 

  • Stein, S.J., Price, W.P., Craig, T.P., Itami, J.K., 1994. Dispersal of a galling sawfly: implications for studies of insect population dynamics. J. Anim. Ecol. 63, 666–676.

    Article  Google Scholar 

  • Stiling, P., Cornelissen, T., 2005. What makes a successful biological control agent? A meta-analysis of biological control agent performance. Biol. Control 34, 236–246.

    Article  Google Scholar 

  • Takafuji, A., 1976. The effect of the rate of successful dispersal of a Phytoseiid mite, Phytoseiulus persimilis ATHIAS-HENRIOT (Acarina: Phytoseiidae) on the persistence in the interactive system between the predator and its prey. Popul. Ecol. 18, 1438–3896.

    Google Scholar 

  • Tang, S.Y., Chen, L.S., 2004. Modelling and analysis of integrated pest management strategy. Discrete Contin. Dyn. Syst. B 4, 759–768.

    Article  MATH  MathSciNet  Google Scholar 

  • Tang, S.Y., Cheke, R.A., 2005. State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292.

    Article  MATH  MathSciNet  Google Scholar 

  • Tang, S.Y., Cheke, R.A., 2008. Models for integrated pest control and their biological implications. Math. Biosci. 215, 115–125.

    Article  MATH  MathSciNet  Google Scholar 

  • Tang, S.Y., Xiao, Y.N., Chen, L.S., Cheke, R.A., 2005. Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 67, 115–135.

    Article  MathSciNet  Google Scholar 

  • Van den Driesche, R.D., Bellows, T.S., 1996. Biological Control. Chapman & Hall, London.

    Google Scholar 

  • Van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Van Lenteren, J.C., 1995. Integrated pest management in protected crops. In: Dent, D. (Ed.), Integrated Pest Management, pp. 311–320. Chapman & Hall, London.

    Google Scholar 

  • Van Lenteren, J.C., 2000. Measures of success in biological control of arthropods by augmentation of natural enemies. In: Wratten, S., Gurr, G. (Eds.), Measures of Success in Biological Control, pp. 77–89. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Van Lenteren, J.C., Woets, J., 1988. Biological and integrated pest control in greenhouses. Annu. Rev. Entomol. 33, 239–250.

    Article  Google Scholar 

  • Volterra, V., 1931. Variations and fluctuations of a number of individuals in animal species living together. In: R.N. Chapman: Animal Ecology. McGraw Hill, New York. Translation.

    Google Scholar 

  • Wang, W.D., Zhao, X.Q., 2004. An epidemic model in a patchy environment. Math. Biosci. 190, 97–112.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyi Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S., Cheke, R.A. & Xiao, Y. Effects of Predator and Prey Dispersal on Success or Failure of Biological Control. Bull. Math. Biol. 71, 2025–2047 (2009). https://doi.org/10.1007/s11538-009-9438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9438-2

Keywords

Navigation