Skip to main content

Advertisement

Log in

Periodic Matrix Population Models: Growth Rate, Basic Reproduction Number, and Entropy

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate λ is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number ℛ0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between λ and ℛ0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius’ notion of evolutionary entropy H and its relationship to the growth rate λ in the periodic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso-Corrado, C., Clark-Tapia, R., Mendoza, A., 2007. Demography and management of two clonal oaks: Quercus eduardii and Q. potosina (Fagaceae) in central México. For. Ecol. Manag. 251, 129–141.

    Article  Google Scholar 

  • Arnold, L., Gundlach, V.M., Demetrius, L., 1994. Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab. 4, 859–901.

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër, N., 2007. Approximation of the basic reproduction number R 0 for vector-borne diseases with a periodic vector population. Bull. Math. Biol. 69, 1067–1091.

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër, N., Abdurahman, X., 2008. Resonance of the epidemic threshold in a periodic environment. J. Math. Biol. 57, 649–673.

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër, N., Guernaoui, S., 2006. The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër, N., Ouifki, R., 2007. Growth rate and basic reproduction number for population models with a simple periodic factor. Math. Biosci. 210, 647–658.

    Article  MATH  MathSciNet  Google Scholar 

  • Berman, A., Plemmons, R.J., 1979. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York.

    MATH  Google Scholar 

  • Brommer, J., Kokko, H., Pietiäinen, H., 2000. Reproductive effort and reproductive value in periodic environments. Am. Nat. 155, 454–472.

    Article  Google Scholar 

  • Caswell, H., 1978. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Popul. Biol. 14, 215–230.

    Article  MathSciNet  Google Scholar 

  • Caswell, H., 2001. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd edn. Sinauer Associates, Sunderland.

    Google Scholar 

  • Caswell, H., Trevisan, M.C., 1994. The sensitivity analysis of periodic matrix models. Ecology 75, 1299–1303.

    Article  Google Scholar 

  • Cushing, J.M., 1998. An Introduction to Structured Population Dynamics. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Cushing, J.M., Zhou, Y., 1994. The net reproductive value and stability in structured population models. Nat. Resour. Model. 8, 1–37.

    Google Scholar 

  • Davis, A.S., Dixon, P.M., Liebman, M., 2004. Using matrix models to determine cropping system effects on annual weed demography. Ecol. Appl. 14, 655–668.

    Article  Google Scholar 

  • Demetrius, L., 1969. The sensitivity of population growth rate to perturbations in the life cycle components. Math. Biosci. 4, 129–136.

    Article  MATH  Google Scholar 

  • Demetrius, L., 1974. Demographic parameters and natural selection. Proc. Nat. Acad. Sci. USA 71, 4645–4647.

    Article  MATH  MathSciNet  Google Scholar 

  • Demetrius, L., Ziehe, M., 2007. Darwinian fitness. Theor. Popul. Biol. 72, 323–345.

    Article  MATH  Google Scholar 

  • Demetrius, L., Gundlach, V.M., Ochs, G., 2004. Complexity and demographic stability in population models. Theor. Popul. Biol. 65, 211–225.

    Article  MATH  Google Scholar 

  • Demetrius, L., Gundlach, V.M., Ziehe, M., 2007. Darwinian fitness and the intensity of natural selection: Studies in sensitivity analysis. J. Theor. Biol. 249, 641–653.

    Article  Google Scholar 

  • Demetrius, L., Gundlach, V.M., Ochs, G., 2009. Invasion exponents in biological networks. Physica A 388, 651–672.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester.

    Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Ge, H., Jiang, D.Q., Qian, M., 2006. A simple discrete model of Brownian motors: time-periodic Markov chains. J. Stat. Phys. 123, 831–859.

    Article  MATH  MathSciNet  Google Scholar 

  • Gervais, J.A., Hunter, C.M., Anthony, R.G., 2006. Interactive effects of prey and p,p′-DDE on burrowing owl population dynamics. Ecol. Appl. 16, 666–677.

    Article  Google Scholar 

  • Goodman, L.A., 1971. On the sensitivity of the intrinsic growth rate to changes in the age-specific birth and death rates. Theor. Popul. Biol. 2, 339–354.

    Article  Google Scholar 

  • Gourley, R.S., Lawrence, C.E., 1977. Stable population analysis in periodic environments. Theor. Popul. Biol. 11, 49–59.

    Article  MathSciNet  Google Scholar 

  • Grear, J.S., Burns, C.E., 2007. Evaluating effects of low quality habitats on regional population growth in Peromyscus leucopus: Insights from field-parameterized spatial matrix models. Landscape Ecol. 22, 45–60.

    Article  Google Scholar 

  • Hamilton, W.D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45.

    Article  Google Scholar 

  • Hunter, C.M., Caswell, H., 2005. The use of the vec-permutation matrix in spatial matrix population models. Ecol. Model. 188, 15–21.

    Article  Google Scholar 

  • Kato, T., 1984. Perturbation Theory for Linear Operators. Springer, Berlin.

    MATH  Google Scholar 

  • Lesnoff, M., Ezanno, P., Caswell, H., 2003. Sensitivity analysis in periodic matrix models: A postscript to Caswell and Trevisan. Math. Comput. Model. 37, 945–948.

    Article  MATH  Google Scholar 

  • Li, C.-K., Schneider, H., 2002. Applications of Perron–Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462.

    Article  MATH  MathSciNet  Google Scholar 

  • Mertens, S.K., van den Bosch, F., Heesterbeek, J.A.P., 2002. Weed populations and crop rotations: Exploring dynamics of a structured periodic system. Ecol. Appl. 12, 1125–1141.

    Article  Google Scholar 

  • Michel, P., Mischler, S., Perthame, B., 2005. General relative entropy inequality: An illustration on growth models. J. Math. Pures Appl. 84, 1235–1260.

    MATH  MathSciNet  Google Scholar 

  • Ramula, S., 2008. Responses to the timing of damage in an annual herb: Fitness components versus population performance. Basic Appl. Ecol. 9, 233–242.

    Article  Google Scholar 

  • Ripley, B.J., Caswell, H., 2006. Recruitment variability and stochastic population growth of the soft-shell clam Mya arenaria. Ecol. Model. 193, 517–530.

    Article  Google Scholar 

  • Seneta, E., 2006. Non-negative Matrices and Markov Chains. Springer, New York.

    MATH  Google Scholar 

  • Skellam, J.G., 1967. In: Le Cam, L.M., Neyman, J. (Eds.), Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability. Biology and Problems of Health, vol. 4, pp. 179–205. University of California Press, Berkeley.

    Google Scholar 

  • Steets, J.A., Knight, T.M., Ashman, T.-L., 2007. The interactive effects of herbivory and mixed mating for the population dynamics of Impatiens capensis. Am. Nat. 170, 113–127.

    Article  Google Scholar 

  • Thieme, H.R., 1984. Renewal theorems for linear periodic Volterra integral equations. J. Integral Equ. 7, 253–277.

    MATH  MathSciNet  Google Scholar 

  • Tuljapurkar, S., 1990. Population Dynamics in Variable Environments. Springer, New York.

    MATH  Google Scholar 

  • Vavrek, M.C., 1997. Within-population variation in demography of Taraxacum officinale: season- and size-dependent survival, growth and reproduction. J. Ecol. 85, 277–287.

    Article  Google Scholar 

  • Wang, W., Zhao, X., 2008. Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717.

    Article  MATH  Google Scholar 

  • Wittmer, H.U., Powell, R.A., King, C.M., 2007. Understanding contributions of cohort effects to growth rates of fluctuating populations. J. Anim. Ecol. 76, 946–956.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bacaër.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacaër, N. Periodic Matrix Population Models: Growth Rate, Basic Reproduction Number, and Entropy. Bull. Math. Biol. 71, 1781–1792 (2009). https://doi.org/10.1007/s11538-009-9426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9426-6

Keywords

Navigation