Skip to main content

Advertisement

Log in

Stochastic Kinetic Modeling of Vesicular Stomatitis Virus Intracellular Growth

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

By building kinetic models of biological networks one may advance the development of new modeling approaches while gaining insights into the biology. We focus here on building a stochastic kinetic model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied virus that encodes five genes. The essential network of VSV reactions creates challenges to stochastic simulation owing to (i) delayed reactions associated with transcription and genome replication, (ii) production of large numbers of intermediate proteins by translation, and (iii) the presence of highly reactive intermediates that rapidly fluctuate in their intracellular levels. We address these issues by developing a hybrid implementation of the model that combines a delayed stochastic simulation algorithm (DSSA) with Langevin equations to simulate the reactions that produce species in high numbers. Further, we employ a quasi-steady-state approximation (QSSA) to overcome the computational burden of small time steps caused by highly reactive species. The simulation is able to capture experimentally observed patterns of viral gene expression. Moreover, the simulation suggests that early levels of a low-abundance species, VSV L mRNA, play a key role in determining the production level of VSV genomes, transcripts, and proteins within an infected cell. Ultimately, these results suggest that stochastic gene expression contribute to the distribution of virus progeny yields from infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, G., Banerjee, A.K., 1976. Sequential transcription of the genes of vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 73(5), 1504–1508.

    Article  Google Scholar 

  • Arkin, A., Ross, J., McAdams, H., 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4), 1633–1648.

    Google Scholar 

  • Ball, L.A., White, C.N., 1976. Order of transcription of genes of vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 73(2), 442–446.

    Article  Google Scholar 

  • Barr, J.N., Whelan, S.P.J., Wertz, G.W., 2002. Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochim. Biophys. Acta, Gene Struct. Expr. 1577(2), 337–353.

    Google Scholar 

  • Barrio, M., Burrage, K., Leier, A., Tian, T., 2006. Oscillatory regulation of hes1: Discrete stochastic delay modelling and simulation. PLoS Comput. Biol. 2(9), e117.

    Article  Google Scholar 

  • Bratsun, D., Volfson, D., Tsimring, L.S., Hasty, J., 2005. Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA 102(41), 14593–14598.

    Article  Google Scholar 

  • Delbrück, M., 1940. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124.

    Article  Google Scholar 

  • Delbrück, M., 1945. The burst size distribution in the growth of bacterial viruses (bacteriophages). J. Bact. 50, 131–135.

    Google Scholar 

  • E, W., Liu, D., Vanden-Eijnden, E., 2005. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys. 123, 194107.

    Article  Google Scholar 

  • Flanagan, E.B., Ball, L.A., Wertz, G.W., 2000. Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J. Virol. 74(17), 7895–7902.

    Article  Google Scholar 

  • Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D.T., 1992. A rigorous derivation of the chemical master equation. Physica A 188, 404–425.

    Article  Google Scholar 

  • Gillespie, D.T., 2000. The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306.

    Article  Google Scholar 

  • Goutsias, J., 2005. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102.

    Article  Google Scholar 

  • Griffith, M., Courtney, T., Peccoud, J., Sanders, W., 2006. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics 22(22), 2782–2789.

    Article  Google Scholar 

  • Haseltine, E.L., Rawlings, J.B., 2002. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969.

    Article  Google Scholar 

  • Iverson, L.E., Rose, J.K., 1981. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23(2), 477–484.

    Article  Google Scholar 

  • Janssen, J.A.M., 1989. The elimination of fast variables in complex chemical reactions. II. Mesoscopic level (reducible case). J. Stat. Phys. 57(1/2), 171–185.

    Article  Google Scholar 

  • Lim, K., Lang, T., Lam, V., Yin, J., 2006. Model-based design of growth-attenuated viruses. PLoS Comput. Biol. 2(9), e116.

    Article  Google Scholar 

  • Mastny, E.A., Haseltine, E.L., Rawlings, J.B., 2007. Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127(9), 094106.

    Article  Google Scholar 

  • Rao, C.V., Arkin, A.P., 2003. Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010.

    Article  Google Scholar 

  • Rose, J., Whitt, M., 2001. Rhabdoviridae: The viruses and their replication. In: Knipe, D., Howley, P. (Eds.), Fields Virology, vol. 1, 4th edn. pp. 1221–1244. Lippincot Williams & Wilkins, Philadelphia.

    Google Scholar 

  • Salis, H., Kaznessis, Y., 2005a. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103.

    Article  Google Scholar 

  • Salis, H., Kaznessis, Y., 2005b. An equation-free probabilistic steady-state approximation: Dynamic application to the stochastic simulation of biochemical reaction networks. J. Chem. Phys. 123, 214106.

    Article  Google Scholar 

  • Samant, A., Vlachos, D.G., 2005. Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm. J. Chem. Phys. 123, 144114.

    Article  Google Scholar 

  • Samant, A., Ogunnaike, B., Vlachos, D., 2007. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks. BMC Bioinf. 8(1), 175.

    Article  Google Scholar 

  • Simonsen, C.C., Batt-Humphries, S., Summers, D., 1979. RNA synthesis of vesicular stomatitis virus-infected cells: In vivo regulation of replication. J. Virol. 31(1), 124–132.

    Google Scholar 

  • Spirin, A., 1986. Ribosome Structure and Protein Biosysthesis. Benjamin/Cummings, Redwood City.

    Google Scholar 

  • Srivastava, R., You, L., Summers, J., Yin, J., 2002. Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218, 309–321.

    Article  MathSciNet  Google Scholar 

  • van Kampen, N.G., 1992. Stochastic Processes in Physics and Chemistry, 2nd edn. Elsevier, Amsterdam.

    Google Scholar 

  • Villarreal, L.P., Breindl, M., Holland, J.J., 1976. Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry 15(8), 1663–1667.

    Article  Google Scholar 

  • Weinberger, L.S., Burnett, J.C., Toettcher, J.E., Arkin, A.P., Schaffer, D.V., 2005. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122(2), 169–182.

    Article  Google Scholar 

  • Werner, M., 1991. Kinetic and thermodynamic characterization of the interaction between Q beta-replicase and template RNA molecules. Biochemistry 30(24), 5832–5838.

    Article  Google Scholar 

  • Zhu, Y., Yongky, A., Yin, J., 2009. Growth of an RNA virus in single cells reveals a broad fitness distribution. Virology 385(1), 39–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensel, S.C., Rawlings, J.B. & Yin, J. Stochastic Kinetic Modeling of Vesicular Stomatitis Virus Intracellular Growth. Bull. Math. Biol. 71, 1671–1692 (2009). https://doi.org/10.1007/s11538-009-9419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9419-5

Keywords

Navigation