Skip to main content

Advertisement

Log in

Stochastic Models and Numerical Algorithms for a Class of Regulatory Gene Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856–860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov, V., Liptser, R., 2004. On existence of limiting distributions for time-nonhomogeneous countable Markov processes. Queueing Syst. 46, 353–361.

    Article  MATH  MathSciNet  Google Scholar 

  • Bellman, R., Cooke, K.L., 1963. Differential-Difference Equations. Academic Press, New York.

    MATH  Google Scholar 

  • Billingsley, P., 1968. Convergence of Probability Measures, vol. XII. New York, Wiley. 253 p.

    MATH  Google Scholar 

  • Bratsun, D., Volfson, D., Tsimring, L., Hasty, J., 2005. Delayed-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102(41), 14593–14598.

    Article  Google Scholar 

  • Burrage, K., Tian, T., Burrage, P., 2004. A multi-scale approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol. 85, 217.

    Article  Google Scholar 

  • Cao, Y., Li, H., Petzold, L., 2004. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121, 4059–4067.

    Article  Google Scholar 

  • Cao, Y., Gillespie, D., Petzold, L., 2005. The slow scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116.

    Article  Google Scholar 

  • Coppel, L.W.A., 1965. Stability and Asymptotic Behavior in Differential Equations. Heath Mathematical Monographs. Boston.

  • Darvey, I.G., Ninham, B.W., Staff, P.J., 1966. Stochastic models for second-order chemical reaction kinetics. The equilibrium state. J. Chem. Phys. 45, 2145.

    Article  Google Scholar 

  • Dill, K., Bromberg, S., 2003. Molecular Driving Forces. Garland, New York.

    Google Scholar 

  • Fournier, T., Gabriel, J.-P., Mazza, C., Pasquier, J., Galbete, J.L., Mermod, N., 2007. Steady-state expression of self-regulated genes. Bioinformatics 23(23), 3185–3192.

    Article  Google Scholar 

  • Gabriel, J.-P., Hanisch, H., Hirsch, W.M., 1981. Dynamic equilibria of helminthic infections? In: Chapman, D.G., Gallucci, V.F. (Eds.), Quantitative Population Dynamics, vol. 13, pp. 83–104. International Cooperative Publishing House, Fairland. Stat. Ecol. Ser.

    Google Scholar 

  • Gadgil, C., Lee, C., Othmer, H., 2005. A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D., 1977. Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys. 81, 2340–2361.

    Article  Google Scholar 

  • Gillespie, D., 2001. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733.

    Article  Google Scholar 

  • Goutsias, J., 2005. Quasi-equilibrium approximation of fast reactions kinetics in stochastic biochemical systems. J. Chem. Phys. 122, 184102.

    Article  Google Scholar 

  • Goutsias, J., Kim, S., 2006. Stochastic transcriptional regulatory systems with time delays: a mean-field approximation. J. Comput. Biol. 13, 1049–1076.

    Article  MathSciNet  Google Scholar 

  • Guido, N., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C., Elston, T., Collins, J., 2006. A bottom-up approach to gene regulation. Nature 439, 856–860.

    Article  Google Scholar 

  • Halanay, A., 1966. Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York.

    MATH  Google Scholar 

  • Hirsch, W.M., Hanisch, H., Gabriel, J.-P., 1985. Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38, 733–753.

    Article  MATH  MathSciNet  Google Scholar 

  • Hornos, J., Schultz, D., Innocentini, G., Wang, J., Walczak, A., Onuchic, J., Wolynes, P., 2005. Self-regulating genes: An exact solution. Phys. Rev. E 72, 051907-1–051907-5.

    Article  MathSciNet  Google Scholar 

  • Imhof, M., Chatellard, P., Mermod, N., 2000. A regulatory network for the efficient control of transgene expression. J. Gene Med. 2, 107–116.

    Article  Google Scholar 

  • Karlebach, G., Shamir, R., 2008. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780.

    Article  Google Scholar 

  • Kepler, T., Elston, T., 2001. Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations. Biophys. J. 81(1), 3116–3136.

    Article  Google Scholar 

  • Lipan, O., Wong, W.H., 2005. The use of oscillatory signals in the study of genetic networks. Proc. Natl. Acad. Sci. U.S.A. 102, 7063–7068.

    Article  Google Scholar 

  • Nasell, I., Hirsch, W.M., 1972. A mathematical model of some helminthic infections. Commun. Pure Appl. Math. 25, 459–477.

    Article  MATH  MathSciNet  Google Scholar 

  • Nasell, I., Hirsch, W.M., 1973. The transmission dynamics of schistosomiasis. Commun. Pure Appl. Math. 26, 395–453.

    Article  MATH  MathSciNet  Google Scholar 

  • Randrianarivony, A., 1997. Fractions continues, q-nombres de Catalan et q-polynômes de Genocchi. Eur. J. Comb. 18, 75–92.

    Article  MATH  MathSciNet  Google Scholar 

  • Paulsson, J., 2005. Models of stochastic gene expression. Phys. Life Rev. 2, 157–175.

    Article  Google Scholar 

  • Peccoud, J., Ycart, B., 1995. Markovian modelling of gene product synthesis. Theor. Popul. Biol. 48(2), 222–234.

    Article  MATH  Google Scholar 

  • Pedraza, J., van Oudenaarden, A., 2005. Noise propagation in gene networks. Science 307, 1965–1969.

    Article  Google Scholar 

  • Visco, P., Allen, R., Ewans, M., 2008a. Exact Solution of a model DNA-inversion switch with orientational control. Phys. Rev. Lett. 101, 118104.

    Article  Google Scholar 

  • Visco, P., Allen, R., Ewans, M., 2008b. Statistical physics of a model binary switch with linear feedback. arXiv:0812.3867.

  • Zhang, Q., Yin, G., 1997. Structural properties of Markov chains with weak and strong interactions. Stoch. Proc. Appl. 70, 181–197.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, T., Gabriel, JP., Mazza, C. et al. Stochastic Models and Numerical Algorithms for a Class of Regulatory Gene Networks. Bull. Math. Biol. 71, 1394–1431 (2009). https://doi.org/10.1007/s11538-009-9407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9407-9

Keywords

Navigation