Skip to main content
Log in

A Mathematical Model of Liver Cell Aggregation In Vitro

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Absi, S.F., Friend, J.R., Hansen, L.K., Hu, W.S., 2002. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp. Cell Res. 274, 56–7.

    Article  Google Scholar 

  • Babak, P., Magnusson, K.G., Sigurdsson, S., 2004. Dynamics of group formation in collective motion of organisms. Math. Med. Biol. 21, 269–92.

    Article  MATH  Google Scholar 

  • Bedossa, P., Paradis, V., 2003. Liver extracellular matrix in health and disease. J. Pathol. 200, 504–15.

    Article  Google Scholar 

  • Bhandari, R.N., Riccalton, L.A., Lewis, A.L., Fry, J.R., Hammond, A.H., Tendler, S.J.B., Shakesheff, K.M., 1997. Liver tissue engineering: A role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng. 7, 345–57.

    Article  Google Scholar 

  • Breward, C.J.W., Byrne, H.M., Lewis, C.E., 2002. The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45(2), 125–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Byrne, H.M., Chaplain, M.A.J., 1996. The importance of constitutive equations in mechanochemical models of pattern formation. Appl. Math. Lett. 9(6), 85–0.

    Article  MATH  Google Scholar 

  • Byrne, H.M., Owen, M.R., 2004. A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49(6), 604–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Byrne, H.M., Preziosi, L., 2003. Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–66.

    Article  MATH  Google Scholar 

  • Centers for Disease Control and Prevention, 2003. Compressed Mortality File (CDC WONDER On-line Database. http://wonder.cdc.gov), Accessed 12 May 2003

  • Chen, C., Chueh, J., Tseng, H., Huang, H., Lee, S., 2003. Preparation and characterisation of biodegradable PLA polymeric blends. Biomaterials 24, 1167–173.

    Article  Google Scholar 

  • Drew, D.A., 1983. Mathematical modelling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–91.

    Article  Google Scholar 

  • Drew, D.A., Segel, L.A., 1971. Averaged equations for two-phase flows. Stud. Appl. Math. 3, 205–31.

    Google Scholar 

  • Enat, R., Jefferson, D.M., Ruiz-Opazo, N., Gatmaitian, Z., Leinwand, L.A., Reid, L.M., 1984. Hepatocyte proliferation in vitro: Its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc. Natl. Acad. Sci. USA 81, 1411–415.

    Article  Google Scholar 

  • Forgacs, G., Foty, R.A., Shafrir, Y., Steinberg, M.S., 1998. Viscoelastic properties of living embryonic tissues: A quantitative study. Biophys. J. 74, 2227–234.

    Article  Google Scholar 

  • Fujii, Y., Nakazawa, K., Funatsu, K., 2000. Intensive promotion of spheroid formation by soluble factors in a hepatocyte-conditioned medium. J. Biomater. Sci. Polym. Ed. 11(7), 731–45.

    Article  Google Scholar 

  • Glicklis, R., Shapiro, L., Agbaria, R., Merchuk, J.C., Cohen, S., 2000. Hepatocyte behaviour within three-dimensional porous alginate scaffolds. Biotechnol. Bioeng. 67(3), 344–53.

    Article  Google Scholar 

  • Glicklis, R., Merchuk, J.C., Cohen, S., 2004. Modelling mass transfer in hepatocyte spheroids via cell viability, spheroid size and hepatocellular functions. Biotechnol. Bioeng. 86(6), 672–80.

    Article  Google Scholar 

  • Gracheva, M.E., Othmer, H.G., 2004. A continuum model of motility in ameboid cells. Bull. Math. Biol. 66, 167–93.

    Article  MathSciNet  Google Scholar 

  • Green, J.E.F., 2006. Mathematical modelling of cell aggregation in liver tissue engineering. Ph.D. thesis, University of Nottingham, UK.

  • Gunatillake, P.A., Adhikari, R., 2003. Biodegradable synthetic polymers for tissue engineering. Eur. Cell. Mater. 5, 1–6.

    Google Scholar 

  • Higuchi, A., Tsukamoto, Y., 2004. Cell separation of hepatocytes and fibroblasts through surface-modified polyurethane membranes. J. Biomed. Mater. Res. Part A 71A:(3), 470–79.

    Article  Google Scholar 

  • Jackson, T.L., Byrne, H.M., 2002. A mechanical model of tumour encapsulation and transcapsular spread. Math. Biosci. 180, 307–28.

    MATH  MathSciNet  Google Scholar 

  • Jauregui, H.O., 2000. Principles of Tissue Engineering, 2nd edn. Liver, Academic, New York, Chap. 39, pp. 541–51.

    Google Scholar 

  • Keller, E.F., Segel, L.A., 1970. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–15.

    Article  Google Scholar 

  • Keller, E.F., Segel, L.A., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–34.

    Article  Google Scholar 

  • Kowalczyk, R., Gamba, A., Preziosi, L., 2004. On the stability of homogeneous solutions to some aggregation models. Discrete Contin. Dyn. Syst. B 4(1), 203–20.

    MATH  MathSciNet  Google Scholar 

  • Lee, K.W., Lee, S.K., Joh, J.W., Kim, S.J., Lee, B.B., Kim, K.W., Lee, K.U., 2004. Influence of pancreatic islets on spheroid formation and functions of hepatocytes in hepatocyte-pancreatic islet spheroid culture. Tissue Eng. 10, 965–77.

    Google Scholar 

  • Lemon, G., King, J.R., Byrne, H.M., Jensen, O.E., Shakesheff, K.M., 2006. Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J. Math. Biol. 52, 571–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Lubkin, S.R., Jackson, T., 2002. Multiphase mechanics of capsule formation in tumours. J. Biomech. Eng. 124, 237–43.

    Article  Google Scholar 

  • Maini, P.K., Murray, J.D., 1988. A nonlinear analysis of a mechanical model for biological pattern formation. SIAM J. Appl. Math. 48(5), 1064–072.

    Article  MATH  MathSciNet  Google Scholar 

  • Matthews, P.C., Cox, S.M., 2000. Pattern formation with a conservation law. Nonlinearity 13(4), 1293–320.

    Article  MATH  MathSciNet  Google Scholar 

  • Mitaka, T., 1998. The current status of primary hepatocyte culture. Int. J. Exp. Pathol. 79, 393–09.

    Article  Google Scholar 

  • Moghe, P.V., Berthiaume, F., Ezzell, R.M., Toner, M., Tompkins, R.G., Yarmush, M.L., 1996. Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17, 373–85.

    Article  Google Scholar 

  • Moghe, P.V., Coger, R.N., Toner, M., Yarmush, M.L., 1997. Cell-cell interactions are essential for maintenance of hepatocyte function in collagen gel but not on matrigel. Biotechnol. Bioeng. 56(6), 706–10.

    Article  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Namy, P., Ohayon, J., Tracqui, P., 2004. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–20.

    Article  MathSciNet  Google Scholar 

  • NHS, 2001. Liver activity. UK transplant activity 2001, UK Transplant—NHS.

  • Oliver, J.M., King, J.R., McKinlay, K.J., Grant, D.M., Scotchford, C.A., Wood, J.V., Brown, P.D., 2005. Thin film theories for two-phase reactive flow models of active cell motion. Math. Med. Biol. 22, 53–8.

    Article  MATH  Google Scholar 

  • OPTN, 2003. Donors and waiting list 1993–2003. Organ Procurement and Transplantation Network. www.optn.org. Accessed 16 Sept. 2003.

  • Owen, M.R., Byrne, H.M., Lewis, C.E., 2004. Mathematical modelling of the use of macrophages as vehicles for drug-delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–91.

    Article  MathSciNet  Google Scholar 

  • Peshwa, M.V., Wu, F.J., Follstad, B.D., Cerra, F.B., Hu, W., 1994. Kinetics of hepatocyte spheroid formation. Biotechnol. Prog. 10, 460–66.

    Article  Google Scholar 

  • Peshwa, M.V., Wu, F.J., Sharp, H.L., Cerra, F.B., Hu, W., 1996. Mechanistics of formation and ultrastructural evaluation of hepatocyte spheroids. In Vitro Cell Dev. Biol. 32, 197–03.

    Article  Google Scholar 

  • Powers, M.J., Griffith-Cima, L., 1996. Motility behaviour of hepatocytes on extracellular matrix substrata during aggregation. Biotechnol. Bioeng. 50, 392–03.

    Article  Google Scholar 

  • Powers, M.J., Rodriguez, R.E., Griffith, L.G., 1997. Cell-substratum adhesion strength as a determinant of hepatocyte aggregate morphology. Biotechnol. Bioeng. 53, 415–26.

    Article  Google Scholar 

  • Powers, M.J., Domansky, K., Kaazempur-Mofrad, M.R., Kalezi, A., Capitano, A., Upadhyaya, A., Kurzawski, P., Wacka, K.E., Stolz, D.B., Kamm, R., Griffith, L.G., 2002. A microfabricated array bioreactor for perfused 3D liver cultures. Biotechnol. Bioeng. 78(3), 257–69.

    Article  Google Scholar 

  • Preziosi, L., Astanin, S., 2005. Modelling the formation of capillaries. In: Quarteroni, A. (Ed.), Integration of Complex Systems in Biomedicine. Springer, New York. Chap. 4.

    Google Scholar 

  • Riccalton-Banks, L., Liew, C., Bhandari, R., Fry, J., Shakesheff, K., 2003. Long-term culture of functional liver tissue: Three-dimensional coculture of primary hepatocytes and stellate cells. Tissue Eng. 9(3), 401–09.

    Article  Google Scholar 

  • Riccalton-Banks, L.A., 2002. Maintenance of primary rat hepatocytes in vitro using co-culture techniques. Ph.D. thesis, University of Nottingham.

  • Richert, L., Binda, D., Hamilton, G., Viollon-Abadie, C., Alexandre, E., Bigot-Lasserre, D., Bars, R., Coassolo, P., LeCluyse, E., 2002. Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes. Toxicol. In Vitro 16, 89–9.

    Article  Google Scholar 

  • Selden, C., Khalil, M., Hodgson, H.J.F., 1999. What keeps hepatocytes on the straight and narrow? Maintaining differentiated liver function. Gut 44, 443–46.

    Article  Google Scholar 

  • Stolz, D.B., Michalopoulos, G.K., 1997. Synergistic enhancement of EGF, but not HGF, stimulated hepatocyte motility by TGF-β1 in vitro. J. Cell. Physiol. 170, 57–8.

    Article  Google Scholar 

  • Strikwerda, J.C., 1989. Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole Advanced Books and Software, Belmont.

    MATH  Google Scholar 

  • Swabb, E.A., Wei, J., Gullino, P.M., 1974. Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34, 2814–822.

    Google Scholar 

  • Thomas, R.J., Bhandari, R., Barrett, D.A., Bennett, A.J., Fry, J.R., Powe, D., Thomson, B.J., Shakesheff, K.M., 2005. The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs 181, 67–9.

    Article  Google Scholar 

  • Thomas, R.J., Bennett, A., Thomson, B., Shakesheff, K.M., 2006. Hepatic stellate cells on poly(DL-lactic acid) surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro. Eur. Cell. Mater. 11, 16–6.

    Google Scholar 

  • Thomas, T.W., DiMilla, P.A., 2000. Spreading and motility of human gliobastoma cells on sheets of silicone rubber depend on substratum compliance. Med. Biol. Eng. Comput. 38, 360–70.

    Article  Google Scholar 

  • Tong, J.Z., Sarrazin, S., Cassio, D., Gaulthier, F., Alvarez, F., 1994. Application of spheroid culture to human hepatocytes and maintainance of their differentiation. Biol. Cell 81, 77–1.

    Article  Google Scholar 

  • Vasiev, B., Weijer, C.J., 2003. Modelling of Dictyostelium discoideum slug migration. J. Theor. Biol. 223, 347–59.

    Article  MathSciNet  Google Scholar 

  • Velegol, D., Lanni, F., 2001. Cell traction forces on soft biomaterials. I Microrheology of type I collagen gels. Biophys. J. 81, 1786–792.

    Article  Google Scholar 

  • Whitaker, M.J., 2003. Supercritical fluid processing of polymers, proteins and cells for tissue engineering applications. Ph.D. thesis, University of Nottingham.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. F. Green.

Additional information

Current address: Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA.

Current address: Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, 24-29 St Giles’ Oxford, OX1 3LB, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J.E.F., Waters, S.L., Shakesheff, K.M. et al. A Mathematical Model of Liver Cell Aggregation In Vitro . Bull. Math. Biol. 71, 906–930 (2009). https://doi.org/10.1007/s11538-008-9387-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9387-1

Keywords

Navigation