Skip to main content
Log in

Evolutionary Consequences of Predation for Pathogens in Prey

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This article investigates the impact of predation on the coexistence and competitive exclusion of pathogen strains in the prey. Two types of predator are considered—a generalist and a specialist. For each type of predator, we assume that the predator can discriminate among susceptible and infected with each strain prey. The two strains will competitively exclude each other in the absence of predation with the strain with the larger reproduction number persisting. If a generalist predator preys discriminantly and the disease is fatal, then depending on the predation level, a switch in the dominant pathogen may occur. Thus, for some predation levels, the first strain may persist while for other predation levels the second strain may persist. Furthermore, a specialist predator preying discriminantly may mediate the coexistence of the two strains. Although in most cases increasing predation reduces the disease load in the prey, when predation leads to coexistence, it may also lead to increase in the disease load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans. Oxford University Press, Oxford.

    Google Scholar 

  • Bremermann, H.J., Thieme, H.R., 1989. A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–90.

    MATH  MathSciNet  Google Scholar 

  • Brauer, F., Castillo-Chavez, C., 2001. Mathematical Models in Population Biology and Epidemiology. Springer, New York.

    MATH  Google Scholar 

  • Chattopadhyay, J., Arino, O., 1999. A predator-prey model with disease in the prey. Nonlinear Anal. Ser. B Real World Appl. 36, 747–66.

    MathSciNet  Google Scholar 

  • Collinge, S.K., Ray, C., 2006. Disease Ecology: Community Structure and Pathogen Dynamics. Oxford University Press, Oxford.

    Google Scholar 

  • Delgado, M., Molina-Becerra, M., Suárez, A., 2006. Analysis of an age-structured predator-prey model with disease in prey. Nonlinear Anal. Real World Appl. 7 , 853–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Han, L., Ma, Z., Hethcote, H.W., 2001. Four predator prey models with infectious diseases. Math. Comput. Model. 34, 849–58.

    Article  MATH  MathSciNet  Google Scholar 

  • Holt, R.D., 1977. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–29.

    Article  MathSciNet  Google Scholar 

  • Holt, R.D., 1997. Community modules. In: Gange, A.C., Brown, V.K. (Eds.), Multitrophic Interactions in Terrestrial Ecosystems, pp. 333–49. Blackwell, Oxford.

    Google Scholar 

  • Holt, R.D., Dobson, A.P., 2006. Extending the principles of community ecology to address the epidemiology of host-pathogen systems. In: Collinge, S.K., Ray, C. (Eds.), Disease Ecology: Community Structure and Pathogen Dynamics, pp. 6–7. Oxford University Press, Oxford.

    Google Scholar 

  • Holt, R.D., Polis, G.A., 1997. A theoretical framework for intraguild predation. Am. Nat. 149, 745–64.

    Article  Google Scholar 

  • Holt, R.D., Roy, M., 2007. Predation can increase the prevalence of an infectious disease. Am. Nat. 169(5), 690–99.

    Article  Google Scholar 

  • Kermack, W.O., McKendrick, A.G., 1927. Contributions to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–21.

    Article  Google Scholar 

  • Lafferty, K.D., 2004. Fishing for lobsters imdirectly increases epidemics in sea urchins. Ecol. Appl. 14(5), 1566–573.

    Article  Google Scholar 

  • Lotka, A.J., 1925. Elements of Physical Biology. Williams and Wilkins, Baltimore.

    MATH  Google Scholar 

  • May, R.M., 1988. Conservation and disease. Conserv. Biol. 2(1), 28–0.

    Article  Google Scholar 

  • Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D., Dobson, A.P., 2003. Keeping herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 797–02.

    Article  Google Scholar 

  • Pech, R.P., Hood, G.M., 1998. Foxes, rabbits, alternative prey and rabbit calicivirus disease: consequences of a new biological control agent for an outbreaking species in Australia. J. Appl. Ecol. 35, 434–53.

    Article  Google Scholar 

  • Pimm, S.L., 2002. Food Webs. The University of Chicago Press, Chicago.

    Google Scholar 

  • Saenz, R.A., Hethcote, H.W., 2006. Competing species models with an infection disease. Math. Biosci. Eng. 3, 219–35.

    MATH  MathSciNet  Google Scholar 

  • Scott, M.E., 1988. The impact of infection and disease on animal populations: Implications for conservation biology. Conserv. Biol. 2(1), 40–6.

    Article  Google Scholar 

  • Smith, D.J., 2006. Predictability and preparedness in influenza control. Science 312, 392–94.

    Article  Google Scholar 

  • Xiao, Y., Chen, L., 2001a. Analysis of a three species eco-epidemiological model. J. Math. Anal. Appl. 258, 733–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao, Y., Chen, L., 2001b. Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–2.

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao, Y., Chen, L., 2002. A ratio-dependent predator-prey model with disease in the prey. Appl. Math. Comput. 131, 397–14.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia Martcheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martcheva, M. Evolutionary Consequences of Predation for Pathogens in Prey. Bull. Math. Biol. 71, 819–844 (2009). https://doi.org/10.1007/s11538-008-9383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9383-5

Keywords

Navigation