Skip to main content
Log in

Multistable Dynamics Mediated by Tubuloglomerular Feedback in a Model of Coupled Nephrons

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

To help elucidate the causes of irregular tubular flow oscillations found in the nephrons of spontaneously hypertensive rats (SHR), we have conducted a bifurcation analysis of a mathematical model of two nephrons that are coupled through their tubuloglomerular feedback (TGF) systems. This analysis was motivated by a previous modeling study which predicts that NaCl backleak from a nephron’s thick ascending limb permits multiple stable oscillatory states that are mediated by TGF (Layton et al. in Am. J. Physiol. Renal Physiol. 291:F79–F97, 2006); that prediction served as the basis for a comprehensive, multifaceted hypothesis for the emergence of irregular flow oscillations in SHR. However, in that study, we used a characteristic equation obtained via linearization from a single-nephron model, in conjunction with numerical solutions of the full, nonlinear model equations for two and three coupled nephrons. In the present study, we have derived a characteristic equation for a model of any finite number of mutually coupled nephrons having NaCl backleak. Analysis of that characteristic equation for the case of two coupled nephrons has revealed a number of parameter regions having the potential for differing stable dynamic states. Numerical solutions of the full equations for two model nephrons exhibit a variety of behaviors in these regions. Some behaviors exhibit a degree of complexity that is consistent with our hypothesis for the emergence of irregular oscillations in SHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, M.D., Carlsson, N., Mosekilde, E., Holstein-Rathlou, N.-H., 2002. Dynamic model of nephron–nephron interaction. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and Its Applications, vol. 129, pp. 365–91. Springer, New York.

    Google Scholar 

  • Arendshorst, W.J., Beierwaltes, W.H., 1979. Renal tubular reabsorption in spontaneously hypertensive rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 6) 237, F38–F47.

    Google Scholar 

  • Barfred, M., Mosekilde, E., Holstein-Rathlou, N.-H., 1996. Bifurcation analysis of nephron pressure and flow regulation. Chaos 6, 280–87.

    Article  Google Scholar 

  • Briggs, J.P., Shubert, G., Schnermann, J., 1984. Quantitative characterization of the tubuloglomerular feedback response: effect of growth. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 16) 247, F808–F815.

    Google Scholar 

  • Budu-Grajdeanu, P., Moore, L.C., Layton, H.E., 2007. Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle’s loop. Math. Biosci. 209, 564–92.

    Article  MATH  MathSciNet  Google Scholar 

  • Carlson, N., Andersen, M.D., 1999. Mathematical modeling of nephrons. Master’s thesis, The Technical University of Denmark.

  • Casellas, D., Moore, L.C., 1990. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 27) 258, F660–F669.

    Google Scholar 

  • Chen, Y.-M., Yip, K.-P., Marsh, D.J., Holstein Rathlou, N.-H., 1995. Magnitude of TGF-initiated nephron–nephron interaction is increased in SHR. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 38) 269, F198–F204.

    Google Scholar 

  • Daniels, F.H., Arendshorst, W.J., 1990. Tubuloglomerular feedback kinetics in spontaneously hypertensive and Wistar–Kyoto rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 28) 259, F529–F534.

    Google Scholar 

  • Dilley, J.R., Arendshorst, W.J., 1984. Enhanced tubuloglomerular feedback activity in rats developing spontaneous hypertension. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 16) 247, F672–F679.

    Google Scholar 

  • Ditlevsen, S., Yip, K.-P., Holstein-Rathlou, N.-H., 2005. A stochastic model of the tubuloglomerular feedback mechanism in a rat nephron. Math. Biosci. 194, 49–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Ditlevsen, S., Yip, K.-P., Marsh, D.J., Holstein-Rathlou, N.-H., 2007. Parameter estimation of feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive and Sprague-Dawley rats. Am. J. Physiol. Renal Physiol. 292, F607–F616.

    Article  Google Scholar 

  • Eaton, D.C., Pooler, J.P., 2004. Vander’s Renal Physiology, 6th edn. McGraw-Hill Medical, New York.

    Google Scholar 

  • Hattaway, A.L., 2004. Modelling tubuloglomerular feedback in coupled nephrons. Ph.D. diss., University of Massachusetts Amherst.

  • Holstein-Rathlou, N.-H., 1987. Synchronization of proximal intratubular pressure oscillations: evidence for interaction between nephrons. Pflügers Arch. 408, 438–43.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H., 1991. A closed-loop analysis of the tubuloglomerular feedback mechanism. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 30) 261, F880–F889.

    Google Scholar 

  • Holstein-Rathlou, N.-H., Leyssac, P.P., 1986. TGF-mediated oscillations in proximal intratubular pressure: Differences between spontaneously hypertensive rats and Wistar–Kyoto rats. Acta Physiol. Scand. 126, 333–39.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H., Leyssac, P.P., 1987. Oscillations in the proximal intratubular pressure: a mathematical model. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 21) 252, F560–F572.

    Google Scholar 

  • Holstein-Rathlou, N.-H., Marsh, D.J., 1989. Oscillations of tubular pressure, flow, and distal chloride concentration in rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 25) 256, F1007–F1014.

    Google Scholar 

  • Holstein-Rathlou, N.-H., Marsh, D.J., 1990. A dynamic model of the tubuloglomerular feedback mechanism. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 27) 258, F1448–F1459.

    Google Scholar 

  • Holstein-Rathlou, N.-H., Marsh, D.J., 1994. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol. Rev. 74, 637–81.

    Google Scholar 

  • Holstein-Rathlou, N.-H., Yip, K.-P., Sosnotseva, O.V., Mosekilde, E., 2001. Synchronization phenomena in nephron–nephron interaction. Chaos 11(2), 417–26.

    Article  Google Scholar 

  • Jensen, K.S., Mosekile, E., Holstein-Rathlou, N.-H., 1986. Self-sustained oscillations and chaotic behaviour in kidney pressure regulation. Mondes Dévelop. 54–5, 91–09.

    Google Scholar 

  • Jensen, K.S., Holstein-Rathlou, N.-H., Leyssac, P.P., Mosekilde, E., Rasmussen, D.R., 1987. Chaos in a system of interacting nephrons. In: Degn, H., Holden, A.V., Olsen, L.F. (Eds.), Life Sciences: Chaos in Biological Systems, Plenum, New York.

    Google Scholar 

  • Källskog, Ö., Marsh, D.J., 1990. TGF-initiated vascular interactions between adjacent nephrons in the rat kidney. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 28) 259, F60–F64.

    Google Scholar 

  • Kesseler, K.J., 2004. Analysis of feedback-mediated oscillations in two coupled nephrons. Ph.D. diss., Duke University.

  • Knepper, M.A., Danielson, R.A., Saidel, G.M., Post, R.S., 1977. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12, 313–23.

    Article  Google Scholar 

  • Layton, A.T., Moore, L.C., Layton, H.E., 2006. Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol. 291, F79–F97.

    Article  Google Scholar 

  • Layton, H.E., Pitman, E.B., 1994. A dynamic numerical method for models of renal tubules. Bull. Math. Biol. 56(3), 547–65.

    MATH  Google Scholar 

  • Layton, H.E., Pitman, E.B., Moore, L.C., 1991. Bifurcation analysis of TGF-mediated oscillations in SNGFR. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 30) 261, F904–F919.

    Google Scholar 

  • Layton, H.E., Pitman, E.B., Moore, L.C., 1995. Instantaneous and steady-state gains in the tubuloglomerular feedback system. Am. J. Physiol. Renal Physiol. 268, F163–F174.

    Google Scholar 

  • Layton, H.E., Pitman, E.B., Moore, L.C., 1997a. Nonlinear filter properties of the thick ascending limb. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 42) 273, F625–F634.

    Google Scholar 

  • Layton, H.E., Pitman, E.B., Moore, L.C., 1997b. Spectral properties of the tubuloglomerular feedback system. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 42) 273, F635–F649.

    Google Scholar 

  • Layton, H.E., Pitman, E.B., Moore, L.C., 2000. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. Am. J. Physiol. Renal Physiol. 278, F287–F301.

    Google Scholar 

  • Leyssac, P.P., Baumbach, L., 1983. An oscillating intratubular pressure response to alterations in Henle loop flow in the rat kidney. Acta Physiol. Scand. 117, 415–19.

    Article  Google Scholar 

  • Leyssac, P.P., Holstein-Rathlou, N.-H., 1989. Tubulo-glomerular feedback response: enhancement in adult spontaneously hypertensive rats and effects of anaesthetics. Pflügers Arch. 413, 267–72.

    Article  Google Scholar 

  • Marsh, D.J., Sosnovtseva, O.V., Chon, K.H., Holstein-Rathlou, N.-H., 2005a. Nonlinear interactions in renal blood flow regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1143–R1159.

    Google Scholar 

  • Marsh, D.J., Sosnovtseva, O.V., Pavlov, A.N., Yip, K.-P., Holstein-Rathlou, N.-H., 2005b. Frequency encoding in renal blood flow regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1160–R1167.

    Google Scholar 

  • Marsh, D.J., Sosnovtseva, O.V., Mosekilde, E., Holstein-Rathlou, N.-H., 2007. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree. Chaos 17, 015114-1-015114-10.

    Article  Google Scholar 

  • Mason, J., Gutsche, H.U., Moore, L.C., Müller-Suur, R., 1979. The early phase of experimental acute renal failure. IV. The diluting ability of the short loops of Henle. Pflügers Arch. 379, 11–8.

    Article  Google Scholar 

  • Mosekilde, E., Sosnovtseva, O.V., Holstein-Rathlou, N.-H., 2005. Collective phenomena in kidney autoregulation. Transplantationsmedizin 17, 115–30.

    Google Scholar 

  • Nyengaard, J.R., Bendtsen, T.F., 1992. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232, 194–01.

    Article  Google Scholar 

  • Oldson, D.R., 2003. Flow perturbations in a mathematical model of the tubuloglomerular feedback system. Ph.D. diss., Duke University.

  • Oldson, D.R., Layton, H.E., Moore, L.C., 2003. Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 285, F972–F989.

    Google Scholar 

  • Perko, L., 2001. Differential Equations and Dynamical Systems, 3rd edn. Springer, New York.

    MATH  Google Scholar 

  • Pitman, E.B., Layton, H.E., Moore, L.C., 1993. Dynamic flow in the nephron: filtered delay in the TGF pathway. Contemp. Math. 114, 317–36.

    Google Scholar 

  • Pitman, E.B., Layton, H.E., Moore, L.C., 1994. Numerical simulation of propagating concentration profiles in renal tubules. Bull. Math. Biol. 56(3), 567–86.

    Article  MATH  Google Scholar 

  • Pitman, E.B., Zaritski, R.M., Kesseler, K.J., Moore, L.C., Layton, H.E., 2004. Feedback-mediated dynamics in two coupled nephrons. Bull. Math. Biol. 66(6), 1463–492.

    Article  MathSciNet  Google Scholar 

  • Reeves, W.B., Andreoli, T.E., 2000. Sodium chloride transport in the loop of Henle, distal convoluted tubule, and collecting duct. In: Seldin, D.W., Giebisch, G. (Eds.), The Kidney: Physiology and Pathophysiology, 3rd edn. pp. 1333–349. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  • Schnermann, J., Briggs, J.P., 2000. Function of the juxtaglomerular apparatus: Control of glomerular hemodynamics and renin secretion. In: The Kidney: Physiology and Pathophysiology, 3rd edn. pp. 945–80. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  • Skeldon, A.C., Purvey, I., 2005. The effect of different forms for the delay in a model of the nephron. Math. Biosci. Eng. 2(1), 97–09.

    MATH  MathSciNet  Google Scholar 

  • Sosnovtseva, O.V., Pavlov, A.N., Mosekilde, E., Holstein-Rathlou, N.-H., 2002a. Bimodal oscillations in nephron autoregulation. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 66, 061909-1–61909-7.

    Google Scholar 

  • Sosnovtseva, O.V., Postnov, D.E., Nekrasov, A.M., Mosekilde, E., Holstein-Rathlou, N.-H., 2002b. Phase multistability of self-modulated oscillations. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 66, 036224-1–36224-9.

    Google Scholar 

  • Sosnovtseva, O.V., Postnov, D.E., Mosekilde, E., Holstein-Rathlou, N.-H., 2003. Synchronization of tubular pressure oscillations in interacting nephrons. Chaos Solitons Fractals 15, 343–69.

    Article  MathSciNet  Google Scholar 

  • Sosnovtseva, O.V., Pavlov, A.N., Mosekilde, E., Holstein-Rathlou, N.-H., Marsh, D.J., 2004. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 70, 031915-1–31915-8.

    Google Scholar 

  • Wagner, A.J., Holstein-Rathou, N.-H., Marsh, D.J., 1997. Internephron coupling by conducted vasomotor responses in normotensive and spontaneously hypertensive rats. Am. J. Physiol. (Renal Physiol. 41) 272, F372–F379.

    Google Scholar 

  • Wang, H., Siu, K., Ju, K., Chon, K.H., 2006. A high resolution approach to estimating time-frequency spectra and their amplitudes. Ann. Biomed. Eng. 34(2), 326–38.

    Article  Google Scholar 

  • Wittner, M., Di Stefano, A., Wangemann, P., Nitschke, R., Greger, R., Bailly, C., Amiel, C., Roinel, N., de Roufignac, C., 1988. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. Pflügers Arch. 412, 516–23.

    Article  Google Scholar 

  • Yip, K.-P., Holstein-Rathlou, N.-H., Marsh, D.J., 1991. Chaos in blood flow control in genetic and renovascular hypertensive rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 30) 261, F400–F408.

    Google Scholar 

  • Yip, K.-P., Holstein-Rathlou, N.-H., Marsh, D.J., 1992. Dynamics of TGF-initiated nephron–nephron interactions in normotensive rats and SHR. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 31) 262, F980–F988.

    Google Scholar 

  • Yip, K.-P., Marsh, D.J., Holstein-Rathlou, N.-H., 1995. Evidence of low dimensional chaos in renal blood flow control in genetic and experimental hypertension. Physica D 80, 95–04.

    Article  MATH  Google Scholar 

  • Zhai, X.-Y., Thomsen, J.S., Birn, H., Kristoffersen, I.B., Andreasen, A., Christensen, E.I., 2006. Three-dimensional reconstruction of the mouse nephron. J. Am. Soc. Nephrol. 17, 77–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita T. Layton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layton, A.T., Moore, L.C. & Layton, H.E. Multistable Dynamics Mediated by Tubuloglomerular Feedback in a Model of Coupled Nephrons. Bull. Math. Biol. 71, 515–555 (2009). https://doi.org/10.1007/s11538-008-9370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9370-x

Keywords

Navigation