Skip to main content
Log in

Estimating the Total Rate of DNA Replication Using Branching Processes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Increasing the knowledge of various cell cycle kinetic parameters, such as the length of the cell cycle and its different phases, is of considerable importance for several purposes including tumor diagnostics and treatment in clinical health care and a deepened understanding of tumor growth mechanisms. Of particular interest as a prognostic factor in different cancer forms is the S phase, during which DNA is replicated. In the present paper, we estimate the DNA replication rate and the S phase length from bromodeoxyuridine-DNA flow cytometry data. The mathematical analysis is based on a branching process model, paired with an assumed gamma distribution for the S phase duration, with which the DNA distribution of S phase cells can be expressed in terms of the DNA replication rate. Flow cytometry data typically contains rather large measurement variations, however, and we employ nonparametric deconvolution to estimate the underlying DNA distribution of S phase cells; an estimate of the DNA replication rate is then provided by this distribution and the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arino, O., Bertuzzi, A., Gandolfi, A., Sanchez, E., Sinisgalli, C., 2005. The asynchronous exponential growth property in a model for the kinetic heterogeneity of tumour cell populations. J. Math. Anal. Appl. 302, 521–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Bagwell, C.B., 1993. Theoretical aspects of flow cytometry data analysis. In: Bauer, K.D., Duque, R.E., Shankey, T.V. (Eds.), Clinical Flow Cytometry: Principles and Application, pp. 41–1. Williams and Wilkins, Baltimore

    Google Scholar 

  • Bagwell, C.B., Clark, G.M., Spyratos, F., Chassevent, A., Bendahl, P.-O., Stål, O., Killander, D., Jourdan, M.L., Romain, S., Hunsberger, B., Baldetorp, B., 2001. Optimizing flow cytometric DNA ploidy and S-phase fraction as independent prognostic markers for node-negative breast cancer specimens. Cytometry 46, 121–35.

    Article  Google Scholar 

  • Baisch, H., Otto, U., 1993. Intratumoral heterogeneity of S phase transition in solid tumours determined by bromodeoxyuridine labeling and flow cytometry. Cell Prolif. 26, 439–48.

    Article  Google Scholar 

  • Basse, B., Baguley, B.C., Marshall, E.S., Wake, G.C., Wall, D.J.N., 2005. Modelling the flow of cytometric data obtained from unperturbed human tumour cell lines: parameter fitting and comparison. Bull. Math. Biol. 67, 815–30.

    Article  MathSciNet  Google Scholar 

  • Begg, A.C., McNally, N.J., Shrieve, D.C., Kärcher, H., 1985. A method to measure the duration of DNA synthesis and the potential doubling time from a single sample. Cytometry 6, 620–26.

    Article  Google Scholar 

  • Bendahl, P.-O., 1995. Estimation and prognostic value of S-phase fractions in cancer cell populations. Ph.D. thesis, Dept. Math. Stat., Lund University, Lund, Sweden

  • Bertuzzi, A., Gandolfi, A., Germani, A., Vitelli, R., 1983. Estimation of cell DNA synthesis rate from flow-cytometric histograms. Cell Biophys. 5, 223–36.

    Google Scholar 

  • Bertuzzi, A., Gandolfi, A., Germani, A., Spanò, M., Starace, G., Vitelli, R., 1984. Analysis of DNA synthesis rate of cultured cells from flow cytometric data. Cytometry 5, 619–28.

    Article  Google Scholar 

  • Bertuzzi, A., Faretta, M., Gandolfi, A., Sinisgalli, C., Starace, G., Valoti, G., Ubezio, P., 2002. Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modeling. Bull. Math. Biol. 64, 355–84.

    Article  Google Scholar 

  • Carroll, R.J., Hall, P., 2004. Low order approximations in deconvolution and regression with errors in variables. J. R. Stat. Soc. B 66, 31–6.

    Article  MATH  MathSciNet  Google Scholar 

  • Chiorino, G., Metz, J.A.J., Tomasoni, D., Ubezio, P., 2001. Desynchronization rate in cell populations: Mathematical modeling and experimental data. J. Theor. Biol. 208, 185–99.

    Article  Google Scholar 

  • Dobrowsky, W., Dobrowsky, E., Wilson, G.D., 2003. In vivo cell kinetic measurements in a randomized trial of continuous hyperfractionated accelerated radiotherapy with or without mitomycin C in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 55, 576–82.

    Google Scholar 

  • Dolbeare, F., Gratzner, H., Pallavicini, M.G., Gray, J.W., 1983. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. 80, 5573–577.

    Article  Google Scholar 

  • Dörmer, P., Brinkmann, R., Born, R., Steel, G.G., 1975. Rate and time of DNA synthesis of individual Chinese hamster cells. Cell Tissue Kinet. 8, 399–12.

    Google Scholar 

  • Haccou, P., Jagers, P., Vatutin, V.A., 2005. Branching Processes: Variation, Growth and Extinction of Populations. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Jagers, P., 1975. Branching Processes with Biological Applications. Wiley, Chichester.

    MATH  Google Scholar 

  • Jagers, P., 1983. Stochastic models for cell kinetics. Bull. Math. Biol. 45, 507–19.

    MATH  MathSciNet  Google Scholar 

  • Jagers, P., 1991. The growth and stabilization of populations. Stat. Sci. 6, 269–83.

    Article  MATH  MathSciNet  Google Scholar 

  • Johansson, M.C., Baldetorp, B., Bendahl, P.-O., Johansson, R., Oredsson, S.M., 1994. An improved mathematical method to estimate DNA synthesis time of bromodeoxyuridine-labelled cells using FCM-derived data. Cell Prolif. 27, 475–88.

    Article  Google Scholar 

  • Johansson, M.C., Baldetorp, B., Bendahl, P.-O., Fadeel, I.A., Oredsson, S.M., 1996. Comparison of mathematical formulas used for estimation of DNA synthesis time of bromodeoxyuridine-labelled cell populations with different proliferative characteristics. Cell Prolif. 29, 525–38.

    Article  Google Scholar 

  • Kimmel, M., Axelrod, D.E., 2000. Branching Processes in Biology. Springer, New York.

    Google Scholar 

  • Larsson, S., Johansson, M., Oredsson, S., Holst, U., 2005. A Markov model approach shows a large variation in the length of S phase in MCF-7 breast cancer cells. Cytometry A 65, 15–5.

    Google Scholar 

  • Macdonald, P.D.M., 1970. Statistical inference for the fraction labelled mitoses curve. Biometrika 57, 489–03.

    Article  MATH  MathSciNet  Google Scholar 

  • Macdonald, P., 1981. Towards an exact analysis of stathmokinetic and continuous labeling experiments. In: Rotenberg, M. (Ed.), Biomathematics and Cell Kinetics: Proceedings of a Workshop Held at Asilomar California, pp. 125–42. Elsevier, Amsterdam

    Google Scholar 

  • Puck, T., Steffen, J., 1963. Life cycle analysis of mammalian cells I. A method for localizing metabolic events within the life cycle, and its application to the action of colcemide and sublethal doses of X-irradiation. Biophys. J. 3, 379–97.

    Article  Google Scholar 

  • Ruppert, D., 1997. Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. J. Am. Stat. Assoc. 92, 1049–062.

    Article  MATH  MathSciNet  Google Scholar 

  • Schutte, B., Reynders, M.M., van Assche, C.L., Hupperets, P.S., Bosman, F.T., Blijham, G.H., 1987. An improved method for the immunocytochemical detection of bromodeoxyuridine labeled nuclei using flow cytometry. Cytometry 8, 372–76.

    Article  Google Scholar 

  • So, A., Downey, K., 1992. Eukaryotic DNA replication. Crit. Rev. Biochem. Mol. Biol. 27, 129–55.

    Article  Google Scholar 

  • van Erp, P.E.J., Brons, P.P.T., Boezeman, J.B.M., de Jongh, G.J., Bauer, F.W., 1988. A rapid flow cytometric method for bivariate bromodeoxyuridine/DNA analysis using simultaneous proteolytic enzyme digestion and acid denaturation. Cytometry 9, 627–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Rydén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, S., Rydén, T., Holst, U. et al. Estimating the Total Rate of DNA Replication Using Branching Processes. Bull. Math. Biol. 70, 2177–2194 (2008). https://doi.org/10.1007/s11538-008-9339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9339-9

Keywords

Navigation