Skip to main content

Advertisement

Log in

A Mathematical Model of Schistosoma mansoni in Biomphalaria glabrata with Control Strategies

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe and analyze a mathematical model for schistosomiasis in which infected snails are distinguished from susceptible through increased mortality and no reproduction. We based the model on the same derivation as Anderson and May (J. Anim. Ecol. 47:219–247, 1978), Feng and Milner (A New Mathematical Model of Schistosomiasis, Mathematical Models in Medical and Health Science, Nashville, TN, 1997. Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, pp. 117–128, 1998), and May and Anderson (J. Anim. Ecol. 47:249–267, 1978), but used logistic growth both in human and snail hosts. We introduce a parameter r, the effective coverage of medical treatment/prevention to control the infection. We determine a reproductive number for the disease directly related to its persistence and extinction. Finally, we obtain a critical value for r that indicates the minimum treatment effort needed in order to clear out the disease from the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, F.R., Kretzschmar, M., 1992. Aggregation and stability in parasite-host models. Parasitology 104, 199–05.

    Article  Google Scholar 

  • Anderson, R.M., 1978. The regulation of host population growth by parasitic species. Parasitology 76, 119–58.

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., 1978. Regulation and stability of host-parasite populations interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–47.

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., 1979. Prevalence of schistosome infections within molluscan populations: Observed patterns and theoretical predictions. Parasitology 79, 63–4.

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., 1985. Helminth infections of humans: Mathematical models, population dynamics, and control. Adv. Parasitol. 24, 1–01.

    Article  Google Scholar 

  • Cohen, J.E., 1977. Mathematical models of schistosomiasis. Ann. Rev. Ecol. Syst. 8, 209–33.

    Article  Google Scholar 

  • Dobson, A.P., 1988. The population biology of parasite-induced changes in host behavior. Q. Rev. Biol. 63, 139–65.

    Article  Google Scholar 

  • Dummit, D.S., Foote, R.M., 1991. Abstract Algebra. Englewood Cliffs, Prentice Hall.

    MATH  Google Scholar 

  • Feng, Z., Milner, F.A., 1998. A New Mathematical Model of Schistosomiasis, Mathematical Models in Medical and Health Science, Innov. Appl. Math., pp. 117–28. Nashville, TN, 1997. Vanderbilt Univ. Press, Nashville.

    Google Scholar 

  • Feng, Z., Li, C.-C., Milner, F.A., 2002. Schistosomiasis models with density dependence and age of infection in snail dynamics, Deterministic and stochastic modeling of biointeraction. Math. Biosci. 177/178, 271–86.

    Article  MathSciNet  Google Scholar 

  • Feng, Z., Eppert, A., Milner, F.A., Minchella, D.J., 2004. Estimation of parameters governing the transmission dynamics of schistosomes. Appl. Math. Lett. 17(10), 1105–112.

    Article  MATH  MathSciNet  Google Scholar 

  • Gérard, C., Théron, A., 1997. Age/size- and time-specific effects of Schistosoma mansoni on energy allocation patterns of its snail host Biomphalaria glabrata. Oecologia 112, 447–52.

    Article  Google Scholar 

  • Jordan, P., Webbe, G., Sturrock, R., 1993. Human Schistosomiasis. CAB, Wallingford.

    Google Scholar 

  • Kretzschmar, M., Adler, F., 1993. Aggregated distributions in models for patchy populations. Theor. Popul. Biol. 43, 1–0.

    Article  MATH  Google Scholar 

  • Kostizin, V.A., 1934. Symbiose, Parasitisme et Évolution. Étude Mathématique, pp. 369–08. Hermann, Paris. Translated in Scudo, F., Ziegler, J. (Eds.), The Golden Age of Theoretical Ecology. Lectures Notes in Biomathematics, vol. 52. Springer, Berlin, 1978.

    Google Scholar 

  • MacDonald, G., 1965. The dynamics of helminth infections, with special reference to schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 59, 489–06.

    Article  Google Scholar 

  • May, R.M., Anderson, R.M., 1978. Regulation and stability of host-parasite populations interactions II. J. Anim. Ecol. 47, 249–67.

    Article  Google Scholar 

  • Milner, F.M., Zhao, R., 2008. A mathematical model of schistosomiasis with spatial structure. Math. Biosci. Eng. 5, 505–22.

    MATH  MathSciNet  Google Scholar 

  • Nåsell, I., 1976. A hybrid model of schistosomiasis with snail latency. Theor. Popul. Biol. 10, 47–9.

    Article  Google Scholar 

  • Pugliese, A., Rosà, R., Damaggio, M.L., 1998. Analysis of a model for macroparasitic infection with variable aggregation and clumped infection. J. Math. Biol. 36, 419–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosà, R., Pugliese, A., 2002. Aggregation, stability, and oscillations in different models for host-macroparasite interactions. Theor. Popul. Biol. 61, 319–34.

    Article  MATH  Google Scholar 

  • Rosà, R., Pugliese, A., Villani, A., Rizzoli, A., 2003. Individual-based vs. deterministic models for macroparasites: host cycles and extinction. Theor. Popul. Biol. 63, 295–07.

    Article  MATH  Google Scholar 

  • Ross, A.G.P., Bartley, P.B., Sleign, A.C., Olds, R.R., Li, Y., Williams, G.M., McManus, D.P., 2002. Schistosomiasis. N. Engl. J. Med. 346, 1212–220.

    Article  Google Scholar 

  • Sorensen, R.E., Minchella, D.J., 2001. Snail-trematode life history interactions: past trends and future directions. Parasitology 123, S3–S18.

    Article  Google Scholar 

  • Sturrock, B.M., 1966. The influence of infection with Schistosoma mansoni on the growth rate and reproduction of Biomphalaria pfeifferi. Ann. Trop. Med. Parasitol. 60, 187–97.

    Google Scholar 

  • Théron, A., 1981. Dynamics of larval populations of Schistosoma mansoni in Biomphalaria glabrata: I—Rhythmic production of cercariae in monomiracidial infections. Ann. Trop. Med. Parasitol. 75(1), 71–7.

    Google Scholar 

  • Théron, A., 1985. Dynamics of the cercarial production of Schistosoma mansoni in relation with the miracidial dose exposure to the snail host Biomphalaria glabrata. Ann. Parasitol. Hum. Comp. 60, 665–74.

    Google Scholar 

  • Zhang, P., Feng, Z., Milner, F.A., 2007. Mathematical models of schistosomiasis with an age structure in the human host. Math. Biosci. 205, 83–07.

    Article  MATH  MathSciNet  Google Scholar 

  • World Health Organization: http://www.who.int/schistosomiasis/en/, available on September, 2007

  • World Health Organization: The control of schistosomiasis. Second report of WHO expert committee. WHO Technical Report Series, No. 830, Geneva (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Augusto Milner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Milner, F.A. A Mathematical Model of Schistosoma mansoni in Biomphalaria glabrata with Control Strategies. Bull. Math. Biol. 70, 1886–1905 (2008). https://doi.org/10.1007/s11538-008-9330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9330-5

Keywords

Navigation