Skip to main content
Log in

Network Development in Biological Gels: Role in Lymphatic Vessel Development

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon, N., 1995. The grotthouse mechanism. Chem. Phys. Lett. 244, 456–462.

    Article  Google Scholar 

  • Boardman, K.C., Swartz, M.A., 2003. Intersititial flow as a guide for lymphatics. Circ. Res. 92, 801–808.

    Article  Google Scholar 

  • Boissonade, J., 2003. Simple chemomechanical process for self-generation of rhythms and forms. Phys. Rev. Lett. 90, 1–4.

    Article  Google Scholar 

  • Boudaoud, A., Caieb, S., 2003. Mechanical phase diagram of shrinking cylindrical gels. Phys. Rev. E 68, 021801–1–6.

    Google Scholar 

  • Cassella, M., Skobe, M., 2002. Lymphatic vessel activation in cancer. Ann. N.Y. Acad. Sci. 979, 120–130.

    Article  Google Scholar 

  • Clague, D.S., Phillips, R.J., 1997. A numerical calculation of the hydraulic permeability of three-dimensional disordered fibrous media. Phys. Fluids 9, 1562–1572.

    Article  Google Scholar 

  • Cogan, N.G., Keener, J.P., 2005. Channel formation in gels. SIAM J. Appl. Math. 65, 1839–1854.

    Article  MATH  MathSciNet  Google Scholar 

  • Courant, R., Hilbert, D., 2004. Methods of Mathematical Physics, vol. 1. Wiley-VCH Verlag GmbH and CO. KGaA.

  • Dobrynin, A.V., Rubinstein, M., 2005. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118.

    Article  Google Scholar 

  • Doi, F., Edwards, S.F., 1986. The Theory of Polymer Dynamics. Oxford University Press, Oxford.

    Google Scholar 

  • Doi, M., 1983. Variational principle for the Kirkwood theory for the dynamics of polymer solutions and suspensions. J. Chem. Phys. 79, 5080–5087.

    Article  Google Scholar 

  • Doi, M., Onuki, A., 1992. Dynamic coupling between stress and composition in polymer solutions and blends. J. Phys. II France 2, 1631–1656.

    Article  Google Scholar 

  • Flory, J.P., 1953. Principles of Polymer Chemistry. Cornell University Press, Ithaca.

    Google Scholar 

  • Hall, D.M., Lookman, T., Fredrickson, G.H., Banerjee, S., 2007. Numerical method for hydrodynamic transport of inhomogeneous polymer melts. J. Comput. Phys. 224, 681–698.

    Article  MATH  MathSciNet  Google Scholar 

  • Hillert, M., Agren, J., 2006. Extremum principles for irrevercable processes. Acta Mater. 54, 2063–2066.

    Article  Google Scholar 

  • Jain, R.K., 2001. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168.

    Article  Google Scholar 

  • Jussila, L., Alitalo, K., 2002. Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700.

    Google Scholar 

  • Kozyreff, G., Tlidi, M., 2004. Optical patterns with different wavelengths. Phys. Rev. E 69, 066202–1–11.

    Google Scholar 

  • Landis, E.M., Pappenheimer, J.R., 1963. Exchange of Substances through the Capillary Walls, Handbook of Physiology: Circulation II, pp. 961–1034.

  • Levick, J.R., 1987. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–438.

    Google Scholar 

  • Milner, S.T., 1993. Dynamical theory of concentration fluctuations in polymer solutions under shear. Phys. Rev. E 48, 3674–3691.

    Article  Google Scholar 

  • Nussbaum, J.H., 1986. Electric Field Control of Mechanical and Electrochemical Properties of Polyelectrolyte Gel Membranes, PhD thesis, Massachusetts Institute of Technology.

  • Nussbaum, J.H., Grodzinsky, A.J., 1981. Proton diffusion reaction in a protein polyelectrolyte membrane and the kinetics of electromechanical forces. J. Membr. Sci. 8, 193–219.

    Article  Google Scholar 

  • Perry, R.H., Green, D.W., 1997. Perry’s Chemical Engineers’ Handbook, 7th ed. McGraw-Hill, New York.

    Google Scholar 

  • Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., Detmar, M., 2001. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198.

    Article  Google Scholar 

  • Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K., 2002. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583.

    Article  Google Scholar 

  • Tanaka, H., 1997. Viscoelastic model of phase separation. Phys. Rev. E 56, 4451–4462.

    Article  Google Scholar 

  • Tomari, T., Doi, M., 1995. Hysteresis and incubation in the dynamics of volume transition of spherical gels. Macromolecules 28, 8334–8343.

    Article  Google Scholar 

  • Tuckerman, M.E., Chandra, A., Marx, D., 2006. Structure and dynamics of OH(aq). Acc. Chem. Res. 39, 151–158.

    Article  Google Scholar 

  • Vogel, S., 2003. Comparative Biomechanics, Life’s Physical World. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Watson, P.D., Bell, D.R., Renkin, E.M., 1980. Early kinetics of large molecule transport between plasma and lymph in dogs. Am. J. Physiol. 239, H525–H531.

    Google Scholar 

  • Watson, P.D., Grodins, F.S., 1978. An analysis of the effects of the interstitial matrix on plasma-lymph transport. Microvasc. Res. 16, 19–41.

    Article  Google Scholar 

  • Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Broker, E.-B., Friedl, P., 2003. Compensation mechanism in tumour cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277.

    Article  Google Scholar 

  • Wolgemuth, C., Hoiczyk, E., Kaiser, D., Oster, G., 2002. How myxobacteria glide. Curr. Biol. 12, 369–377.

    Article  Google Scholar 

  • Wolgemuth, C.W., Mogilner, A., Oster, G., 2004. The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery. Eur. Biophys. J. 33, 146–158.

    Article  Google Scholar 

  • Yashin, V.V., Balazs, A.C., 2006. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798–801.

    Article  MathSciNet  Google Scholar 

  • Zaman, M.H., Kamm, R.D., Patsudaira, P., Lauffenburger, D.A., 2005. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397.

    Article  Google Scholar 

  • Zaman, M.H., Trapani, L.M., Siemeski, A., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A., Matsudaira, P., 2006. Migration of tumor cells in 3d matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103, 10889–10894.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Roose.

Additional information

This work was supported by the Royal Society (London) by the award of a University Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roose, T., Fowler, A.C. Network Development in Biological Gels: Role in Lymphatic Vessel Development. Bull. Math. Biol. 70, 1772–1789 (2008). https://doi.org/10.1007/s11538-008-9324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9324-3

Keywords

Navigation