Skip to main content

Advertisement

Log in

A Model for Mechano-Electrical Feedback Effects on Atrial Flutter Interval Variability

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Atrial flutter is a supraventricular arrhythmia, based on a reentrant mechanism mainly confined to the right atrium. Although atrial flutter is considered a regular rhythm, the atrial flutter interval (i.e., the time interval between consecutive atrial activation times) presents a spontaneous beat-to-beat variability, which has been suggested to be related to ventricular contraction and respiration by mechano-electrical feedback. This paper introduces a model to predict atrial activity during atrial flutter, based on the assumption that atrial flutter variability is related to the phase of the reentrant activity in the ventricular and respiratory cycles. Thus, atrial intervals are given as a superimposition of phase-dependent ventricular and respiratory modulations. The model includes a simplified atrioventricular (AV) branch with constant refractoriness and conduction times, which allows the prediction of ventricular activations in a closed-loop with atrial activations. Model predictions are quantitatively compared with real activation series recorded in 12 patients with atrial flutter. The model predicts the time course of both atrial and ventricular time series with a high beat-to-beat agreement, reproducing 96±8% and 86±21% of atrial and ventricular variability, respectively. The model also predicts the existence of phase-locking of atrial flutter intervals during periodic ventricular pacing and such results are observed in patients. These results constitute evidence in favor of mechano-electrical feedback as a major source of cycle length variability during atrial flutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T., 1983. On the arithmetic of phase locking: Coupled neurons as a lattice on R 2. Physica D 6(3), 305–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, V.I., 1991. Cardiac arrhythmias and circle mappings. Chaos 1(1), 20–4.

    Article  MATH  MathSciNet  Google Scholar 

  • Bélair, J., 1986. Periodic pulsatile stimulation of a nonlinear oscillator. J. Math. Biol. 24(2), 217–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Billette, J., Nattel, S., 1994. Dynamic behavior of the atrioventricular node: a functional model of interaction between recovery, facilitation, and fatigue. J. Cardiovasc. Electrophysiol. 5(1), 90–02.

    Article  Google Scholar 

  • Bode, F., Katchman, A., Woosley, R.L., Franz, M.R., 2000. Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulation 101(18), 2200–205.

    Google Scholar 

  • Botteron, G.W., Smith, J.M., 1995. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42(6), 579–86.

    Article  Google Scholar 

  • Calaghan, S.C., White, E., 1999. The role of calcium in the response of cardiac muscle to stretch. Prog. Biophys. Mol. Biol. 71(1), 59–0.

    Article  Google Scholar 

  • Chorro, F.J., Egea, S., Mainar, L., Canoves, J., Sanchis, J., Llavador, E., Lopez-Merino, V., Such, L., 1998. Acute changes in wavelength of the process of auricular activation induced by stretching. Experimental study. Rev. Esp. Cardiol. 51(11), 874–83.

    Google Scholar 

  • Deck, K.A., 1964. Changes in the resting potential and the cable properties of Purkinje fibers during stretch. Pflugers Arch. Gesamte Physiol. Menschen. Tiere. 280, 131–40.

    Article  Google Scholar 

  • Dominguez, G., Fozzard, H.A., 1979. Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Am. J. Physiol. 237(3), C119–C124.

    Google Scholar 

  • Eijsbouts, S., Van Zandvoort, M., Schotten, U., Allessie, M., 2003. Effects of acute atrial dilation on heterogeneity in conduction in the isolated rabbit heart. J. Cardiovasc. Electrophysiol. 14(3), 269–78.

    Article  Google Scholar 

  • Franz, M.R., 1996. Mechano-electrical feedback in ventricular myocardium. Cardiovasc. Res. 32(1), 15–4.

    MathSciNet  Google Scholar 

  • Franz, M.R., Bode, F., 2003. Mechano-electrical feedback underlying arrhythmias: the atrial fibrillation case. Prog. Biophys. Mol. Biol. 82, 163–74.

    Article  Google Scholar 

  • Glass, L., 1991. Cardiac arrhythmias and circle maps-A classical problem. Chaos 1(1), 13–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Healy, S.N., McCulloch, A.D., 2005. An ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes. Europace 7, 2128–134.

    Article  Google Scholar 

  • Heethaar, R.M., Denier van der Gon, J.J., Meijler, F.L., 1973. Mathematical model of A-V conduction in the rat heart. Cardiovas. Res. 7(1), 105–14.

    Article  Google Scholar 

  • Hu, H., Sachs, F., 1997. Stretch-activated ion channels in the heart. J. Mol. Cell Cardiol. 29(6), 1511–523.

    Article  Google Scholar 

  • Jorgensen, P., Schafer, C., Guerra, P.G., Talajic, M., Nattel, S., Glass, L., 2002. A mathematical model of human atrioventricular nodal function incorporating concealed conduction. Bull. Math. Biol. 64(6), 1083–099.

    Article  Google Scholar 

  • Kamkin, A., Kiseleva, I., Wagner, K.D., Leiterer, K.P., Theres, H., Scholz, H., Gunther, J., Lab, M.J., 2000. Mechano-electric feedback in right atrium after left ventricular infarction in rats. J. Mol. Cell. Cardiol. 32(3), 465–77.

    Article  Google Scholar 

  • Kaufmann, R.L., Lab, M.J., Hennekes, R., Krause, H., 1971. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 324(2), 100–23.

    Article  Google Scholar 

  • Kautzner, J., Malik, M., Camm, A.J., 2000. Autonomic modulation of AV nodal conduction. In: Mazgalev, T.N., Tchou, P.J. (Eds.), Atrial-AV Nodal Electrophysiology: A view from the Millennium, pp. 237–50. Futura Publishing Company, New York

    Google Scholar 

  • Kohl, P., Day, K., Noble, D., 1998. Cellular mechanisms of cardiac mechano-electric feedback in a mathematical model. Can. J. Cardiol. 14(1), 111–19.

    Google Scholar 

  • Kohl, P., Ravens, U., 2003. Cardiac mechano-electric feedback: past, present, and prospect. Prog. Biophys. Mol. Biol. 82(1–3), 3–9.

    Article  Google Scholar 

  • Kuijpers, N.H., ten Eikelder, H.M., Bovendeerd, P.H., Verheule, S., Arts, T., Hilbers, P.A., 2007. Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am. J. Physiol. Heart Circ. Physiol. 292(6), H2832–H2853.

    Article  Google Scholar 

  • Lab, M.J., 1980. Transient depolarisation and action potential alterations following mechanical changes in isolated myocardium. Cardiovas. Res. 14(11), 624–37.

    Article  Google Scholar 

  • Lab, M.J., 1982. Contraction-excitation feedback in myocardium. Physiological basis and clinical relevance. Circ. Res. 50(6), 757–66.

    Google Scholar 

  • Lammers, W.J.E.P., Ravelli, F., Disertori, M., Antolini, R., Furlanello, F., Allessie, M.A., 1991. Variations in human atrial flutter cycle length induced by ventricular beats: evidence of a reentrant circuit with a partially excitable gap. J. Cardiovasc. Electrophysiol. 2(5), 375–87.

    Article  Google Scholar 

  • Langendorf, R., 1948. Concealed conduction: the effect of blocked impulses on the formation and conduction of subsequent impulses. Am. Heart J. 35, 542–52.

    Article  Google Scholar 

  • Mangin, L., Vinet, A., Page, P., Glass, L., 2005. Effects of antiarrhythmic drug therapy on atrioventricular nodal function during atrial fibrillation in humans. Europace 7, 271–82.

    Article  Google Scholar 

  • Matsuda, Y., Toma, Y., Ogawa, H., Matsuzaki, M., Katayama, K., Fujii, T., Yoshino, F., Moritani, K., Kumada, T., Kusukawa, R., 1983. Importance of left atrial function in patients with myocardial infarction. Circulation 67(3), 566–71.

    Google Scholar 

  • McGuinness, M., Hong, Y., Galletly, D., Larsen, P., 2004. Arnold tongues in human cardiorespiratory systems. Chaos 14(1), 1–.

    Article  MathSciNet  Google Scholar 

  • Nazir, S.A., Lab, M.J., 1996a. Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 32, 52–1.

    Google Scholar 

  • Nazir, S.A., Lab, M.J., 1996b. Mechanoelectric feedback in the atrium of the isolated guinea-pig heart. Cardiovas. Res. 32(1), 112–19.

    Google Scholar 

  • Ninio, D.M., Murphy, K.J., Howe, P.R., Saint, D.A., 2005. Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J. Cardiovasc. Electrophysiol. 16(11), 1189–194.

    Article  Google Scholar 

  • Nollo, G., Del Greco, M., Ravelli, F., Disertori, M., 1994. Evidence of low- and high-frequency oscillations in human AV interval variability: evaluation with spectral analysis. Am. J. Physiol. 267(4), H1410–H1418.

    Google Scholar 

  • Page, R.L., Wharton, J.M., Prystowsky, E.N., 1996. Effect of continuous vagal enhancement on concealed conduction and refractoriness within the atrioventricular node. Am. J. Cardiol. 77(4), 260–65.

    Article  Google Scholar 

  • Ravelli, F., Disertori, M., Cozzi, F., Antolini, R., Allessie, M.A., 1994. Ventricular beats induce variations in cycle length of rapid (type II) atrial flutter in humans. Evidence of leading circle reentry. Circulation 89(5), 2107–116.

    Google Scholar 

  • Ravelli, F., Allessie, M., 1997. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96(5), 1686–695.

    Google Scholar 

  • Ravelli, F., 1998. Atrial flutter cycle length oscillations and role of the autonomic nervous system. Circulation 98(6), 607–08.

    Google Scholar 

  • Ravelli, F., 2003. Mechano-electric feedback and atrial fibrillation. Progr. Biophys. Mol. Biol. 82(1–3), 137–49.

    Article  Google Scholar 

  • Rice, J.J., Winslow, R.L., Dekanski, J., McVeigh, E., 1998. Model studies of the role of mechano-sensitive currents in the generation of cardiac arrhythmias. J. Theor. Biol. 190(4), 295–12.

    Article  Google Scholar 

  • Riemer, T.L., Sobie, E.A., Tung, L., 1998. Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models. Am. J. Physiol. 275(2), H431–H442.

    Google Scholar 

  • Riemer, T.L., Tung, L., 2003. Stretch-induced excitation and action potential changes of single cardiac cells. Prog. Biophys. Mol. Biol. 82(1–3), 97–10.

    Article  Google Scholar 

  • Robotham, J.L., Lixfeld, W., Holland, L., MacGregor, D., Bryan, A.C., Rabson, J., 1978. Effects of respiration on cardiac performance. J. Appl. Physiol. 44(5), 703–09.

    Google Scholar 

  • Sachs, F., 1991. Mechanical transduction by membrane ion channels: a mini review. Mol. Cell. Biochem. 104(1–2), 57–0.

    Google Scholar 

  • Sachs, F., 1994. Modeling mechanical-electrical transduction in the heart. In: Mow, V.C., Guliak, F., Tran-Son-Tray, R., Hochmuth, R.M. (Eds.), Cell Mechanics and Cellular Engineering, pp. 308–28. Springer, New York

    Google Scholar 

  • Shrier, A., Dubarsky, H., Rosengarten, M., Guevara, M.R., Nattel, S., Glass, L., 1987. Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. Circulation 76(6), 1196–205.

    Google Scholar 

  • Tavi, P., Han, C., Weckstrom, M., 1998. Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels. Circ. Res. 83(11), 1165–177.

    Google Scholar 

  • Tung, L., Zou, S., 1995. Influence of stretch on excitation threshold of single frog ventricular cells. Exp. Physiol. 80(2), 221–35.

    Google Scholar 

  • Uherka, D.J., Tresser, C., Galeeva, R., Campbell, D.K., 1992. Solvable models for the quasi-periodic transition to chaos. Phys. Lett. A 170(3), 189–94.

    Article  MathSciNet  Google Scholar 

  • Vulliemin, P., Del Bufalo, A., Schlaepfer, J., Fromer, M., Kappenberger, L., 1994. Relation between cycle length, volume, and pressure in type I atrial flutter. Pacing Clin. Electrophysiol. 17(8), 1391–398.

    Article  Google Scholar 

  • Waldo, A.L., 2000. Treatment of atrial flutter. Heart 84(2), 227–32.

    Article  Google Scholar 

  • Warner, M.R., deTarnowsky, J.M., Whitson, C.C., Loeb, J.M., 1986. Beat-by-beat modulation of AV conduction. II. Autonomic neural mechanisms. Am. J. Physiol. 251(6), H1134–H1142.

    Google Scholar 

  • Warner, M.R., Loeb, J.M., 1986. Beat-by-beat modulation of AV conduction. I. Heart rate and respiratory influences. Am. J. Physiol. 251(6), H1126–H1133.

    Google Scholar 

  • Waxman, M.B., Yao, L., Cameron, D.A., Kirsh, J.A., 1991. Effects of posture, Valsalva maneuver and respiration on atrial flutter rate: an effect mediated through cardiac volume. J. Am. Coll. Cardiol. 17(7), 1545–552.

    Article  Google Scholar 

  • White, E., Le Guennec, J.Y., Nigretto, J.M., Gannier, F., Argibay, J.A., Garnier, D., 1993. The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp. Physiol. 78(1), 65–8.

    Google Scholar 

  • Zarse, M., Stellbrink, C., Athanatou, E., Robert, J., Schotten, U., Hanrath, P., 2001. Verapamil prevents stretch-induced shortening of atrial effective refractory period in Langendorff-perfused rabbit heart. J. Cardiovasc. Electrophysiol. 12(1), 85–2.

    Article  Google Scholar 

  • Zhuang, J., Yamada, K.A., Saffitz, J.E., Kleber, A.G., 2000. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ. Res. 87(4), 316–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Masé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masé, M., Glass, L. & Ravelli, F. A Model for Mechano-Electrical Feedback Effects on Atrial Flutter Interval Variability. Bull. Math. Biol. 70, 1326–1347 (2008). https://doi.org/10.1007/s11538-008-9301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9301-x

Keywords

Navigation