Skip to main content
Log in

Sudden Shifts in Ecological Systems: Intermittency and Transients in the Coupled Ricker Population Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many real ecological systems show sudden changes in behavior, phenomena sometimes categorized as regime shifts in the literature. The relative importance of exogenous versus endogenous forces producing regime shifts is an important question. These forces’ role in generating variability over time in ecological systems has been explored using tools from dynamical systems. We use similar ideas to look at transients in simple ecological models as a way of understanding regime shifts. Based in part on the theory of crises, we carefully analyze a simple two patch spatial model and begin to understand from a mathematical point of view what produces transient behavior in ecological systems. In particular, since the tools are essentially qualitative, we are able to suggest that transient behavior should be ubiquitous in systems with overcompensatory local dynamics, and thus should be typical of many ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amritkar, R.E., Gade, P.M., 1993. Wavelength doubling bifurcations in coupled map lattices. Phys. Rev. Lett. 70(22), 3408–3411.

    Article  Google Scholar 

  • Amritkar, R.E., Gade, P.M., Gangal, A.D., Nandkumaran, V.M., 1991. Stability of periodic-orbits of coupled-map lattices. Phys. Rev. A 44(6), R3407–R3410.

    Article  MathSciNet  Google Scholar 

  • Anteneodo, C., Pinto, S.E.D., Batista, A.M., Viana, R.L., 2003. Analytical results for coupled-map lattices with long-range interactions. Phys. Rev. E 68(4), 045202.

    Article  Google Scholar 

  • Astakhov, V.V., Anishchenko, V.S., Shabunin, A.V., 1995. Controlling spatiotemporal chaos in a chain of the coupled logistic maps. IEEE Trans. Circuits Syst. I-Fundam. Theory Appl. 42(6), 352–357.

    Article  Google Scholar 

  • Atkinson, K.E., 1978. An Introduction to Numerical Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M., 1978. All Lyapunov characteristic numbers are effectively computable. C. R. Hebd. Seances Acad. Sci. Ser. A 286(9), 431–433.

    MATH  MathSciNet  Google Scholar 

  • Bjornstad, O.N., Grenfell, B.T., 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293(5530), 638–643.

    Article  Google Scholar 

  • Carpenter, S.R., Brock, W.A., 2006. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9(3), 308–315.

    Google Scholar 

  • De Monte, S., d’Ovidio, F., Chate, H., Mosekilde, E., 2004. Noise-induced macroscopic bifurcations in globally coupled chaotic units. Phys. Rev. Lett. 92(25), 254101.

    Article  Google Scholar 

  • Eckmann, J.-P., Ruelle, D., 1985. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656.

    Article  MathSciNet  Google Scholar 

  • Feigenbaum, M.J., 1978. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Gade, P.M., Amritkar, R.E., 1993. Spatially periodic-orbits in coupled-map lattices. Phys. Rev. E 47(1), 143–154.

    Article  MathSciNet  Google Scholar 

  • Grebogi, C., Ott, E., Yorke, J.A., 1982. Chaotic attractors in crisis. Phys. Rev. Lett. 48(22), 1507–1510.

    Article  MathSciNet  Google Scholar 

  • Grebogi, C., Ott, E., Yorke, J.A., 1983. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3), 181–200.

    Article  MathSciNet  Google Scholar 

  • Grebogi, C., Ott, E., Yorke, J.A., 1986. Critical exponent of chaotic transients in nonlinear dynamic-systems. Phys. Rev. Lett. 57(11), 1284–1287.

    Article  MathSciNet  Google Scholar 

  • Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A., 1987. Critical exponents for crisis-induced intermittency. Phys. Rev. A 36(11), 5365–5380.

    Article  MathSciNet  Google Scholar 

  • Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York.

    MATH  Google Scholar 

  • Gyllenberg, M., Söderbacka, G., Ericsson, S., 1993. Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. Math. Biosci. 118, 25–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Hastings, A., 1982. Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol. 16, 49–55.

    MATH  MathSciNet  Google Scholar 

  • Hastings, A., 1995. A metapopulation model with population jumps of varying sizes. Math. Biosci. 128, 285–298.

    Article  MATH  Google Scholar 

  • Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45.

    Article  Google Scholar 

  • Hastings, A., Higgins, K., 1994. Persistence of transients in spatially structured ecological models. Science 263, 1133–1136.

    Article  Google Scholar 

  • Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J., 1993. Chaos in ecology—is mother-nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33.

    Google Scholar 

  • Hsu, G.H., Ott, E., Grebogi, C., 1988. Strange saddles and the dimension of their manifolds. Phys. Lett. A 127, 199–204.

    Article  MathSciNet  Google Scholar 

  • Janaki, T.M., Rangarajan, G., Habib, S., Ryne, R.D., 1999. Computation of the Lyapunov spectrum for continuous-time dynamical systems and discrete maps. Phys. Rev. E 60, 6614–6626.

    Article  MATH  MathSciNet  Google Scholar 

  • Kaneko, K., 1992a. Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos. Phys. Lett. A 149(2–3), 105–112.

    Google Scholar 

  • Kaneko, K., 1992b. Overview of coupled map lattices. Chaos 2, 279–282.

    Article  MATH  MathSciNet  Google Scholar 

  • Kaneko, K., 1993. Chaotic traveling waves in a coupled map lattice. Physica D 68(3–4), 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  • Katok, A., Hasselblatt, B., 1995. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol 54. Cambridge University Press, New York.

    MATH  Google Scholar 

  • Kendall, B.E., Fox, G.A., 1998. Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistics map. Theor. Popul. Biol. 54, 11–37.

    Article  MATH  Google Scholar 

  • Konishi, T., Kaneko, K., 1992. Clustered motion in symplectic coupled map systems. J. Phys. A 25, 6283–6296.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuznetsov, Y.A., 1998. Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112. Springer, New York.

    MATH  Google Scholar 

  • Labra, F.A., Lagos, N.A., Marquet, P.A., 2003. Dispersal and transient dynamics in metapopulations. Ecol. Lett. 6, 197–204.

    Article  Google Scholar 

  • Lai, Y.C., 1995. Persistence of supertransients of spatiotemporal chaotic dynamical systems in noisy environment. Phys. Lett. A 200, 418–422.

    Article  Google Scholar 

  • Lloyd, A.L., 1995. The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol. 173, 217–230.

    Article  Google Scholar 

  • Ludwig, D., Jones, D.D., Holling, C.S., 1978. Qualitative-analysis of insect outbreak systems—spruce budworm and forest. J. Animal Ecol. 47(1), 315–332.

    Article  Google Scholar 

  • Manrubia, S.C., Mikhailov, A.S., 2000. Very long transients in globally coupled maps. Europhys. Lett. 50, 580–586.

    Article  Google Scholar 

  • May, R.M., 1973. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.

    Google Scholar 

  • Morita, S., 1996. Bifurcations in globally coupled chaotic maps. Phys. Lett. A 211(5), 258–264.

    Article  MATH  MathSciNet  Google Scholar 

  • Parekh, N., Parthasarathy, S., Sinha, S., 1998. Global and local control of spatiotemporal chaos in coupled map lattices. Phys. Rev. Lett. 81, 1401–1404.

    Article  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., Flannery, B., 2002. Numerical Reicipes in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ricker, W., 1954. Stock and recruitment. J. Fish. Res. Board Can. 11, 559–663.

    Google Scholar 

  • Robinson, C., 1995. Dynamical Systems. CRC Press, Boca Raton.

    MATH  Google Scholar 

  • Saravia, L.A., Ruxton, G.D., Coviella, C.E., 2000. The importance of transients’ dynamics in spatially extended populations. Proc. Roy. Soc. Lond. 267, 1781–1786.

    Article  Google Scholar 

  • Scheffer, M., van Nes, E.H., 2004. Mechanisms for marine regime shifts: can we use lakes as microcosms for oceans? Prog. Oceanogr. 60(2–4), 303–319.

    Article  Google Scholar 

  • Silva, J.A.L., De Castro, M.L., Justo, D.A.R., 2001. Stability in a metapopulation model with density-dependent dispersal. Bull. Math. Biol. 63, 485–505.

    Article  Google Scholar 

  • Wysham, D.B., Meiss, J.D., 2006. Iterative techniques for computing the linearized manifolds of quasiperiodic tori. Chaos 16(2), 023129.

    Article  MathSciNet  Google Scholar 

  • Zhu, K.E., Chen, T.L., Bian, G.X., 2003. Controlling spatiotemporal chaos in coupled map lattices to periodic orbits. Commun. Theor. Phys. 40(5), 527–532.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derin B. Wysham.

Additional information

This work has been supported by NSF Grant EF-0434266.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysham, D.B., Hastings, A. Sudden Shifts in Ecological Systems: Intermittency and Transients in the Coupled Ricker Population Model. Bull. Math. Biol. 70, 1013–1031 (2008). https://doi.org/10.1007/s11538-007-9288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9288-8

Keywords

Navigation