Skip to main content
Log in

Modeling of Branching Patterns in Plants

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A major determinant of plant architecture is the arrangement of branches around the stem, known as phyllotaxis. However, the specific form of branching conditions is not known. Here we discuss this question and suggest a branching model which seems to be in agreement with biological observations.

Recently, a number of models connected with the genetic network or molecular biology regulation of the processes of pattern formation appeared. Most of these models consider the plant hormone, auxin, transport and distribution in the apical meristem as the main factors for pattern formation and phyllotaxis. However, all these models do not take into consideration the whole plant morphogenesis, concentrating on the events in the shoot or root apex. On the other hand, other approaches for modeling phyllotaxis, where the whole plant is considered, usually are mostly phenomenological, and due to it, do not describe the details of plant growth and branching mechanism.

In this work, we develop a mathematical model and study pattern formation of the whole, though simplified, plant organism where the main physiological factors of plant growth and development are taken into consideration. We model a growing plant as a system of intervals, which we will consider as branches. We assume that the number and location of the branches are not given a priori, but appear and grow according to certain rules, elucidated by the application of mathematical modeling.

Four variables are included in our model: concentrations of the plant hormones auxin and cytokinin, proliferation and growth factor, and nutrients—we observe a wide variety of plant forms and study more specifically the involvement of each variable in the branching process. Analysis of the numerical simulations shows that the process of pattern formation in plants depends on the interaction of all these variables. While concentrations of auxin and cytokinin determine the appearance of a new bud, its growth is determined by the concentrations of nutrients and proliferation factors. Possible mechanisms of apical domination in the frame of our model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aida, M., Vernoux, T., Furutani, M., Traas, J., Tasaka, M., 2002. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129, 3965–3974.

    Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1995. Biologie Moléculaire de la Cellule, 3th edn. Médecine-Sciences, Flammarion.

    Google Scholar 

  • Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., Friml, J., 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602.

    Article  Google Scholar 

  • Bessonov, N., Volpert, V., 2003. On a problem of plant growth. In: Abramian A., Vakulenko S., Volpert V. (Eds.), Patterns and Waves, pp. 323–337. St. Petersburg.

  • Bessonov, N., Volpert, V., 2006. Dynamic Models of Plant Growth. Publibook, Paris.

    MATH  Google Scholar 

  • Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B., 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021), 39–44.

    Article  Google Scholar 

  • Borisjuk, L., Wang, T.L., Rolletschek, H., Wobus, U., Weber, H., 2002. A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation. Development 129, 1595–1607.

    Google Scholar 

  • Borisjuk, L., Rolletschek, H., Wobus, U., Weber, H., 2003. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J. Exp. Biol. 54(382), 503–512.

    Google Scholar 

  • Boucheron, E., Guivarc’h, A., Azmi, A., Dewitte, W., Van Onckelen, H., Chriqui, D., 2002. Competency of Nicotiana tabacum L. stem tissues to dedifferentiate is associated with differential levels of cell cycle gene expression and endogenous cytokinins. Planta 215, 267–278.

    Article  Google Scholar 

  • Boudon, F., Prusinkiewicz, P., Federl, P., Godin, C., Karwowski, R., 2003. Interactive design of bonsai tree models. Eurographics 22(3).

  • Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inze, D., Sandberg, G., Casero, P.J., Bennett, M., 2001. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13, 843–852.

    Article  Google Scholar 

  • Clowes, F.A., 1961. Apical Meristems. Davis Company, Philadelphia.

    Google Scholar 

  • Cosgrove, D.J., 2000. Loosening of plant cell walls by expansins. Nature 407, 321–326.

    Article  Google Scholar 

  • Delisle, A., 1937. The influence of auxin on secondary branching in two species of aster. Am. J. Bot. 24(3), 159–167.

    Article  MathSciNet  Google Scholar 

  • de Reuille, P.B., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., Traas, J., 2006. Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc. Natl. Acad. Sci. USA 103(5), 1627–1632.

    Article  Google Scholar 

  • Fleming, A.J., 2005. Formation of primordia and phyllotaxy. Curr. Opin. Plant Biol. 8, 53–58.

    Article  MathSciNet  Google Scholar 

  • Forest, L., Demongeot, J., 2006. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D Don). Bull. Math. Biol. 68, 753–784.

    Article  MathSciNet  Google Scholar 

  • Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jurgens, G., Palme, K., 2002. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108(5), 661–673.

    Article  Google Scholar 

  • Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., Palme, K., 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230.

    Article  Google Scholar 

  • Godin, C., et al., 2004. 4th international workshop on functional-structural plant models. Publication UMR AMAP.

  • Godin, C., Caraglio, Y., 1998. A multiscale model of plant topological structures. J. Theor. Biol. 191, 1–46.

    Article  Google Scholar 

  • Green, P.B., 1999. Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am. J. Bot. 86(8), 1059.

    Article  Google Scholar 

  • Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., Meyerowitz, E.M., 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911.

    Article  Google Scholar 

  • Himanen, K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inze, D., Beeckman, T., 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339–2351.

    Article  Google Scholar 

  • Hoffmann, I., Clarke, P.R., Marcote, M.J., Karsenti, E., Draetta, G., 1993. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12(1), 53–63.

    Google Scholar 

  • Jean, R.V., 1994. Phyllotaxis. A Systematic Study in Plant Morphogenesis. Cambridge University Press, New York.

    Google Scholar 

  • Jonsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., Mjolsness, E., 2006. An auxin-driven polarized transport model for phyllotaxis. PNAS 103(5), 1633–1638.

    Article  Google Scholar 

  • Jürgens, G., Geldner, N., 2002. Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3(9), 605–613.

    Article  Google Scholar 

  • Kerk, N.M., Jiang, K., Feldman, L.J., 2000. Auxin metabolism in the root apical meristem. Plant Physiol. 122(3), 925–932.

    Article  Google Scholar 

  • Kramer, E.M., 2001. A mathematical model of auxin-mediated radial growth in trees. J. Theor. Biol. 208, 387–397.

    Article  Google Scholar 

  • Leon, P., Sheen, J., 2003. Sugar and hormone connections. Trends Plant Sci. 8(3), 110–116.

    Article  Google Scholar 

  • Lopez-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., Nieto-Jacobo, M.F., Simpson, J., Herrera-Estrella, L., 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129, 244–256.

    Article  Google Scholar 

  • Lorenz, S., Tintelnot, S., Reski, R., Decker, E.L., 2003. Cyclin D-knockout uncouples developmental progression from sugar availability. Plant Mol. Biol. 53, 227–236.

    Article  Google Scholar 

  • Lyndon, R.F., 1998. The Shoot Apical Meristem. Cambridge University Press, Cambridge.

    Google Scholar 

  • Magyar, Z., De Veylder, L., Atanassova, A., Bako, L., Inze, D., Bogre, L., 2005. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 17(9), 2527–2541.

    Article  Google Scholar 

  • Mazliak, P., 1998. Physiologie Végétale. II. Croissance et Développement. Hermann, Paris.

    Google Scholar 

  • Meicenheimer, R.D., 1981. Changes in Epilobium phyllotaxy induced by N-1-naphthylphthalamic acid and a-4-chlorophenoxyisobutyric acid. Am. J. Bot. 68, 1139–1154.

    Article  Google Scholar 

  • Meinhardt, H., 1984. Models of Pattern Formation and Their Application to Plant Development, pp. 1–32. Cambridge.

  • Meinhardt, H., 2003. The Algorithmic Beauty of Sea Shells. Springer, Berlin.

    MATH  Google Scholar 

  • Morozova, N., 1993. Morphophysiological correlations in plant embryogenesis and embryoidogenesis. Ph.D Thesis.

  • Murray, J., 2001. Mathematical Biology. Introduction, 3rd edn. Springer, Berlin. 575 p.

    Google Scholar 

  • Niklas, K.J., 1986. Computer simulations of branching-patterns and their implications on the evolution of plants. In: Some Mathematical Questions in Biology—Plant Biology. Lectures on Mathematics in the Life Sciences, vol. 18, pp. 1–50. AMS, Providence.

    Google Scholar 

  • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., Shimura, Y., 1991. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell 3, 677–684.

    Article  Google Scholar 

  • Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C., Fleming, A., 2001. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci. 98, 11812–11817.

    Article  Google Scholar 

  • Rajeevan, M.S., Lang, A., 1993. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation. Proc. Natl. Acad. Sci. USA 90(10), 4636–4640.

    Article  Google Scholar 

  • Reinhardt, D., 2005. Regulation of phyllotaxis. Int. J. Dev. Biol. 49, 539–546.

    Article  Google Scholar 

  • Reinhardt, D., Wittwer, F., Mandel, T., Kuhlemeier, C., 1998. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10, 1427–1437.

    Article  Google Scholar 

  • Reinhardt, D., Mandel, T., Kuhlemeier, C., 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507–518.

    Article  Google Scholar 

  • Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C., 2003. Regulation of phyllotaxis by polar auxin transport. Nature 462, 255–260.

    Article  Google Scholar 

  • Rosche, E., Blackmore, D., Tegeder, M., Richardson, T., Schroeder, H., Higgins, T.J., Frommer, W.B., Offler, C.E., Patrick, J.W., 2002. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J. 30(2), 165–175.

    Article  Google Scholar 

  • Sitbon, F., Astot, C., Edlund, A., Crozier, A., Sandberg, G., 2000. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 211, 715–721.

    Article  Google Scholar 

  • Skoog, F., 1954. Chemical regulation of growth in plants. In: Boell (Ed.), Dynamics of Growth Process, pp. 148–182.

  • Skoog, F., Miller, C.O., 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118–140.

    Google Scholar 

  • Smith, R.S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., Prusinkiewicz, P., 2006. A plausible model of phyllotaxis. PNAS 103(5), 1301–1306.

    Article  Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H., Murray, J.A., 1995. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7(1), 85–103.

    Article  Google Scholar 

  • Stieger, P.A., Reinhardt, D., Kuhlemeier, C., 2002. The auxin influx carrier is essential for correct leaf positioning. Plant J. 32, 509–517.

    Article  Google Scholar 

  • Stirnberg, P., Chatfield, S.P., Leyser, H.M., 1999. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol. 121(3), 839–847.

    Article  Google Scholar 

  • Thingnaes, E., Torre, S., Ernstsen, A., Moe, R., 2003. Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann. Bot. (Lond.) 92, 601–612.

    Article  Google Scholar 

  • Thompson, D’Arcy, 1992. On Growth and Forms, the complete revised edn. Dover, New York.

    Google Scholar 

  • Traas, J., Bohn-Courseau, I., 2005. Cell proliferation patterns at the shoot apical meristem. Curr. Opin. Plant Biol. 8, 587–592.

    Article  Google Scholar 

  • Treml, B.S., Winderl, S., Radykewicz, R., Herz, M., Schweizer, G., Hutzler, P., Glawischnig, E., Ruiz, R.A., 2005. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 139(18), 4063–4074.

    Article  Google Scholar 

  • Turing, A., 1952. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  • Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P., Traas, J., 2000. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127, 5157–5165.

    Google Scholar 

  • Went, F.W., 1944. Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Am. J. Bot. 31(10), 597–618.

    Article  Google Scholar 

  • Wolpert, L., 2002. Principles of Development, 2nd edn. Oxford University Press, Oxford.

    Google Scholar 

  • Wyrzykowska, J., Pien, S., Shen, W.H., Fleming, A.J., 2002. Manipulation of leaf shape by modulation of cell division. Development 129, 957–964.

    Google Scholar 

  • Yamaguchi, M., Kato, H., Yoshida, S., Yamamura, S., Uchimiya, H., Umeda, M., 2003. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc. Natl. Acad. Sci. USA 100(13), 8019–8023.

    Article  Google Scholar 

  • Yan, H.P., Kang, M.Z., De Reffye, P., Dingkuhn, M., 2004. A dynamic, architectural plant model simulating resource-dependent growth. Ann. Bot. 93, 591–602.

    Article  Google Scholar 

  • Zhu, Y.X., Davies, P.J., 1997. The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas. Plant Physiol. 113, 631–637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Volpert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessonov, N., Morozova, N. & Volpert, V. Modeling of Branching Patterns in Plants. Bull. Math. Biol. 70, 868–893 (2008). https://doi.org/10.1007/s11538-007-9282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9282-1

Keywords

Navigation