Skip to main content
Log in

Eutacticity in Sea Urchin Evolution

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An eutactic star, in a n-dimensional space, is a set of N vectors which can be viewed as the projection of N orthogonal vectors in a N-dimensional space. By adequately associating a star of vectors to a particular sea urchin, we propose that a measure of the eutacticity of the star constitutes a measure of the regularity of the sea urchin. Then, we study changes of regularity (eutacticity) in a macroevolutive and taxonomic level of sea urchins belonging to the Echinoidea class. An analysis considering changes through geological time suggests a high degree of regularity in the shape of these organisms through their evolution. Rare deviations from regularity measured in Holasteroida order are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragón, J.L., Gómez-Rodríguez, A., Torres, M., 2005. Simplified dynamic model for the motility of irregular echinoids. Phys. Rev. E 72(4), 041925.

    Article  Google Scholar 

  • Coen, E., 1999. The Art of Genes: How Organisms Make Themselves. Oxford University Press, New York.

    Google Scholar 

  • Coxeter, H.S.M., 1973. Regular Polytopes. Dover, New York.

    Google Scholar 

  • Hadwiger, H., 1940. Über ausgezeichnete vektorsterne und reguläre polytope. Comment. Math. Helv. 13(1), 90–107.

    Article  MathSciNet  Google Scholar 

  • Holland, N., 1988. The meaning of developmental asymmetry for echinoderm evolution: a new interpretation. In: C.R.C.A.B. Paul, A.B. Smith (Eds.), Echinoderm Phylogeny and Evolutionary Biology, pp. 13–25. Oxford University Press, Oxford.

    Google Scholar 

  • Jan, Y.N., Jan, J.N., 1999. Asymmetry across species. Nat. Cell Biol. 1(2), E42–E44.

    Article  Google Scholar 

  • Knoblich, J., 2001. Asymmetric cell division during animal development. Nat. Rev. Moll. Cell Biol. 2(1), 11–20.

    Article  Google Scholar 

  • Lebrun, P., (2000). Une Histoire Naturelle des Échinides. 2ème Partie: Anatomie, Ontogenèse et Dimorphisme, Locomotion, Paléoécologie, Origine et Évolution des Échinides, Minéraux & Fossiles, Hors-Série 10.

  • Melville, N.V., Durham, J.W., 1966. Skeletal morphology. In: R.C. Moore (Ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. The Geological Society of America and University of Kansas Press, Lawrence.

    Google Scholar 

  • Rasskin-Gutman, D., Izpisúa-Belmonte, J., 2004. Theoretical morphology of developmental asymmetries. BioEssays. 26(4), 405–412.

    Article  Google Scholar 

  • Rohlf, F.J., 2006. tpsDIG2 is a program for digitizing landmarks and outlines for geometric morphometric analysis. URL: http://life.bio.sunysb.edu/morph/.

  • Smith, A., 1997. Echinoderm larvae and phylogeny. Annu. Rev. Ecol. Syst. 28, 219–241.

    Article  Google Scholar 

  • Torres, M., Aragón, J.L., Domíngez, P., Gil, D., 2002. Regularity in irregular echinoids. J. Math. Biol. 44(4), 330–340.

    Article  MATH  Google Scholar 

  • Zelditch, M., Swiderski, D., Sheets, D.H., Fink, W., 2004. Geometric Morphometrics for Biologists. Academic, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Aragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Sauceda, J., Aragón, J.L. Eutacticity in Sea Urchin Evolution. Bull. Math. Biol. 70, 625–634 (2008). https://doi.org/10.1007/s11538-007-9273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9273-2

Keywords

Navigation