Skip to main content
Log in

Markov Random Field Modeling of the Spatial Distribution of Proteins on Cell Membranes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cell membranes display a range of receptors that bind ligands and activate signaling pathways. Signaling is characterized by dramatic changes in membrane molecular topography, including the co-clustering of receptors with signaling molecules and the segregation of other signaling molecules away from receptors. Electron microscopy of immunogold-labeled membranes is a critical technique to generate topographical information at the 5–10 nm resolution needed to understand how signaling complexes assemble and function. However, due to experimental limitations, only two molecular species can usually be labeled at a time. A formidable challenge is to integrate experimental data across multiple experiments where there are from 10 to 100 different proteins and lipids of interest and only the positions of two species can be observed simultaneously. As a solution, we propose the use of Markov random field (MRF) modeling to reconstruct the distribution of multiple cell membrane constituents from pair-wise data sets. MRFs are a powerful mathematical formalism for modeling correlations between states associated with neighboring sites in spatial lattices. The presence or absence of a protein of a specific type at a point on the cell membrane is a state. Since only two protein types can be observed, i.e., those bound to particles, and the rest cannot be observed, the problem is one of deducing the conditional distribution of a MRF with unobservable (hidden) states. Here, we develop a multiscale MRF model and use mathematical programming techniques to infer the conditional distribution of a MRF for proteins of three types from observations showing the spatial relationships between only two types. Application to synthesized data shows that the spatial distributions of three proteins can be reliably estimated. Application to experimental data provides the first maps of the spatial relationship between groups of three different signaling molecules. The work is an important step toward a more complete understanding of membrane spatial organization and dynamics during signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, N.L. et al., 2007. Dynamics, topography, and microdomains in FcεRI signaling. Biophys. J., submitted.

  • Barisas, B.G. et al., 2007. Compartmentalization of the Type I Fc epsilon receptor and MAFA on mast cell membranes. Biophys. Chem. 126, 209–217.

    Article  Google Scholar 

  • Berlin, R.D. et al., 1974. Control of cell surface topography. Nature 247, 45–46.

    Article  Google Scholar 

  • Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. Ser. B 36(2), 192–236.

    MATH  MathSciNet  Google Scholar 

  • Besag, J., 1986. On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. Ser. B 48(3), 259–302.

    MATH  MathSciNet  Google Scholar 

  • Bouman, C.A., Shapiro, M., 1994. A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3(2), 162–177.

    Article  Google Scholar 

  • Celeux, G., Forbes, F., Peyrard, N., 2003. EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognit. 36(1), 131–144.

    Article  MATH  Google Scholar 

  • Chalmond, B., 1989. An iterative Gibbsian technique for reconstruction of M-ary images. Pattern Recognit. 22(6), 747–762.

    Article  Google Scholar 

  • Cross, G.R., Jain, A.K., 1983. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 25–39.

    Google Scholar 

  • Dempster, A.P., M. Laird, N., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38.

    MATH  Google Scholar 

  • Derin, H., Elliott, H., 1987. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 39–55.

    Google Scholar 

  • Efros, A.A., Leung, T.K., 1999. Texture synthesis by non-parametric sampling. In: ICCV ’99: Proceedings of the International Conference on Computer Vision, vol. 2, p. 1033, Washington, DC, USA. IEEE Computer Society.

  • Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741.

    MATH  Google Scholar 

  • Gill, P.E., Murray, W., Saunders, M.A., 2002. SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006.

    Article  MATH  MathSciNet  Google Scholar 

  • Gurelli, M.I., Onural, L., 1994. On a parameter estimation method for Gibbs–Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 16(4), 424–430.

    Article  Google Scholar 

  • Hancock, J.F., Prior, I.A., 2005. Electron microscopic imaging of ras signaling domains. Methods 37(2), 165–712.

    Article  Google Scholar 

  • Hernandez-Sanchez, B.A. et al., 2006. Synthesizing biofunctionalized nanoparticles to image cell signaling pathways. IEEE Trans. NanoBiosc. 5, 222–230.

    Article  Google Scholar 

  • Kato, Z., Berthod, M., Zerubia, J., 1996. A hierarchical Markov random field model and multitemperature annealing for parallel image classification. CVGIP: Graph. Model Image Process. 58(1), 18–37.

    Article  Google Scholar 

  • Kato, Z., Zerubia, J., Berthod, M., 1999. Unsupervised parallel image classification using Markovian models. Pattern Recognit. 32(4), 591–604.

    Article  Google Scholar 

  • Kim, J.H. et al., 2005. Independent trafficking of Ig-α/Ig-β and μ-heavy chain is facilitated by dissociation of the B cell antigen receptor complex. J. Immunol. 175, 147–154.

    Google Scholar 

  • Laferté, J.M., Pérez, P., Heitz, F., 2000. Discrete Markov image modeling and inference on the quadtree. IEEE Trans. Image Process. 9(3), 390–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, S.Z., 1995. Markov Random Field Modeling in Computer Vision. Springer, London.

    Google Scholar 

  • Liang, K.H., Tjahjadi, T., 2006. Adaptive scale fixing for multiscale texture segmentation. IEEE Trans. Image Process. 15(1), 249–256.

    Article  Google Scholar 

  • Lidke, K.A. et al., 2007. Direct observation of membrane proteins confined by actin corrals. J. Cell Biol., submitted.

  • Mignotte, M. et al., 2000. Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Trans. Image Process. 9(7), 1216–1231.

    Article  Google Scholar 

  • Nicolau, D.V. et al., 2006. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell Biol. 26, 313–323.

    Article  Google Scholar 

  • Oliver, J.M. et al., 2004. Membrane receptor mapping: the membrane topography of FcεRI signaling. In: P. Quinn (Ed.), Membrane Dynamics and Domains, Subcellular Biochemistry, vol. 37. Kluwer Academic/Plenum, Dordecht/New York, pp. 3–34.

    Google Scholar 

  • Paget, R., Longstaff, I.D., 1998. Texture synthesis via a noncausal nonparametric multiscale Markov random field. IEEE Trans. Image Process. 7(6), 925–931.

    Article  Google Scholar 

  • Plowman, S.J. et al., 2005. H-ras, k-ras and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. 102, 15500–15505.

    Article  Google Scholar 

  • Prior, I.A. et al., 2003. Direct visualization of ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160(2), 165–170.

    Article  Google Scholar 

  • Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286.

    Article  Google Scholar 

  • Rahman, N.A. et al., 1992. Rotational dynamics of type I Fc epsilon receptors on individually-selected rat mast cells studied by polarized fluorescence depletion. Biophys. J. 61, 334–346.

    Google Scholar 

  • Seagrave, J.C. et al., 1991. Relationship of IgE receptor topography to secretion in RBL-2H3 mast cells. J. Cell Physiol. 148, 139–151.

    Article  Google Scholar 

  • Thomas, J.L., Feder, T.J., Webb, W.W., 1992. Effects of protein concentration on IgE receptor mobility in rat basophilic leukemia cell plasma membranes. Biophys. J. 61, 1402–1412.

    Article  Google Scholar 

  • Tjelmeland, H., Besag, J., 1998. Markov random fields with higher order interactions. Scand. J. Stat. 25, 415–433.

    Article  MATH  MathSciNet  Google Scholar 

  • Tonazzini, A., Bedini, L., Salerno, E., 2006. A Markov model for blind image separation by a mean-field EM algorithm. IEEE Trans. Image Process. 15(2), 473–482.

    Article  MathSciNet  Google Scholar 

  • Volna, P. et al., 2004. Negative regulation of mast cell signaling and function by the adaptor lab/ntal. J. Exp. Med. 200(8), 1001–1013.

    Article  Google Scholar 

  • Wilson, R., Li, C.T., 2003. A class of discrete multiresolution random fields and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 42–56.

    Article  Google Scholar 

  • Wilson, B.S., Pfeiffer, J.R., Oliver, J.M., 2000. Observing FcεRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149(5), 1131–1142.

    Article  Google Scholar 

  • Wilson, B.S. et al., 2001. High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT. J. Cell Biol. 154(3), 645–658.

    Article  Google Scholar 

  • Wilson, B.S., Pfeiffer, J.R., Oliver, J.M., 2002. FcεRI signaling observed from the inside of the mast cell membrane. Mol. Immun. 38, 1259–1268.

    Article  Google Scholar 

  • Wilson, B.S. et al., 2004. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15(6), 2580–2592.

    Article  Google Scholar 

  • Xue, M. et al., 2007. FPR and FcεRI occupy common signaling domains for localized crosstalk. Mol. Biol. Cell 18, 1410–1420.

    Article  Google Scholar 

  • Yang, S. et al., 2007. Mapping ErbB receptors on breast cancer cell membranes during signal transduction. J. Cell Sci. 120, 2763–2773.

    Article  Google Scholar 

  • Zhang, J., 1992. The mean field theory in EM procedures for Markov random fields. IEEE Trans. Image Process. 40(10), 2570–2583.

    MATH  Google Scholar 

  • Zhang, J., Modestino, J.W., Langan, D.A., 1994. Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation. IEEE Trans. Image Process. 3(4), 404–420.

    Article  Google Scholar 

  • Zhang, J. et al., 2006. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 37(1), 14–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance R. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Steinberg, S.L., Wilson, B.S. et al. Markov Random Field Modeling of the Spatial Distribution of Proteins on Cell Membranes. Bull. Math. Biol. 70, 297–321 (2008). https://doi.org/10.1007/s11538-007-9259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9259-0

Keywords

Navigation